
IBM SPSS Modeler使用技巧--参数及全局变量的使用
在使用IBM SPSS Modeler过程中,有一些小技巧可能容易被大家忽略,而它们却是可以帮助我们更加高效、方便地实现我们需要的功能,今天给大家介绍参数及全局变量的使用。
什么时候需要用到参数?
在做分析过程中,如果我们需要根据不同条件来运行相同的数据流,而且这个条件是在多个节点需要用到,那这个时候,我们就可以使用参数来实现了。
参数类型:
1.流参数:在流脚本中或在流属性对话框中设置,可用于流中的所有节点。
2.会话参数:在独立脚本中或在会话参数对话框中设置。这些会话参数可用于当前会话中使用的所有流(即在管理器窗格的“流”选项卡中列出的所有流)。
设置方式:
流参数:菜单栏【工具】-->【流属性】-->【参数】
会话参数:菜单栏【工具】-->【设置会话参数】
可以看到不管是流参数,还是会话参数,设置的方法都是一样的,只是影响的范围不一样。
举例:
设置流参数Date_from和Date_to,每次运行时提示输入起始时间和终止时间。
Step 1:菜单栏【工具】-->【流属性】-->【参数】,输入如下:
Step 2:在选择节点中,设置条件如下,其中$P-Date_from和$P-Date_to就是我们刚才设置的流参数。
Step 3:
运行流的时候,就会弹出对话框要求输入起始日期及终止日期:
输入这两个日期,确定之后,会按照该日期条件运行相应的数据流,并得出结果。
什么时候需要用到全局变量?
当我们需要使用某个指标值的统计值,比如说平均值、汇总值、最小值、最大值、标准差来进行【选择】或者是【导出】的计算的时候,全局量可以方便地帮助我们实现。
举例:
当前我们有2016年每个月销售金额的数据,要新增一列每个月销售金额的占比,一般我们需要先通过汇总值把销售金额汇总后,再合并到原来的表中,这样会比较麻烦,通过全局量的设置,就可以很方便地实现。
实现数据流如下:
Step 1:读取源数据。
Step 2:用类型节点读取值。
Step 3:在【输出】面板中,选择及连接【设置全局量】。
Step 4:点击运行之后,会在菜单栏的【工具】-->【流属性】—>【选项】—>【全局量】面板自动生成全局变量及相应计算好的数值。
Step 5:使用导出节点,生成占比指标,在导出的表达式面板中,右边下拉框中选择【全局量】,可以看到前面生成的全局量的值
Step 6:使用表格查看结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11