京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言 字符串的处理(解析+案例)
数据分析师的日常工作就是数据预处理,数据预处理最经常遇到的问题就是字符串的处理,这部分很难,我以前看过一些R的书和一些技术博客,现在依旧发现有些细节做不好,下面我就转载别人的一些字符串处理的方法,我会在下面说说我的看法:
字符串分割函数:strsplit( )
字符串连接函数:paste( )
计算字符串长度:nchar( )
字符串截取函数:substr( )及substring( )
字符串替换函数:chartr( )
大小写转换函数:toupper( )、tolower( )及casefold( )
以目前的工作来说,前4个至少每次都可以用到其中的一两个,5和6不经常用。
1:strsplit( )函数用于字符串分割,其中split是分割参数。所得结果以默认以list形式展示。
用法:strsplit("字符串",sep=“”(分隔符,可省略sep=,直接写“”双引号里面的内容))
2:paste( )函数用于字符串连接,其中sep负责两组字符串间的连接;collapse负责一组字符串内部的连接。
用法:paste(..., sep = " ", collapse = NULL) (举例:A<-c(a,b),B<-c(1,2),paste(A,B,sep="_",collapse=":")结果为:A_1:B_2。
3:很好理解,用法+案例:nchar(“abc”)结果为3。n是char的长度计算。
4:substr( )函数和substring( )函数是截取字符串最常用的函数,两个函数功能方面是一样的,只是其中参数设置不同。
substr( )函数:必须设置参数start和stop,如果缺少将出错。用法:substr(“字符串”,start=数字,stop=数字)下同。
substring( )函数:可以只设置first参数,last参数若不设置,则默认为1000000L,通常是指字符串的最大长度。
这个也很少理解:substr("abcd",2,3)结果为bc;substring("abcd",2)结果为bcd。
注意:substr和substring的区别就是最后一个参数:前者是必须存在stop结尾,后者随意。
5:chartr( )函数:将原有字符串中特定字符替换成所需要的字符。
其中参数old表示原有字符串中内容;new表示替换后的字符内容
用法:chartr(old= ,new= ,数据框)
案列:x<-c(abc),chartr(old="b",new="s",x)结果就是asc。
6:toupper( )函数:将字符串统一转换为大写。
tolower( )函数:将字符串统一转换为小写。
casefold( )函数:根据参数转换大小写。
前面2个函数比较简单,说说第三个:casefold(向量,upper=T或FALSE),upper=T全是大写,反之。
写这个有2个好处,1是可以帮助别人,2是自我巩固,当然重点是2自我巩固。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31