京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Geoffrey Hinton、Andrew Moore、吴恩达等人总结 2017 AI 大事件
近年来,人工智能似乎成为了业内讨论最广泛的科学技术,尤其是在 2017年,人工智能已然是业内关注的焦点。有的人认为,具有超级智能的机器人可以威胁人类、接管世界;也有的人觉得,人类对人工智能的恐惧被夸大了。
因此,当 2017 年即将过去的时候,外媒 Axios 对人工智能圈内的一些知名人物进行了一次采访,看看在他们的眼里,今年最重要的人工智能大事件都是些什么吧。雷锋网 AI 科技评论把他们的呈现介绍如下。
Rodney Brooks,Rethink Robotics 公司创始人
对我来说,今年最重要的人工智能时间,其实是我在电视上看到的一个广告。那是在2017年12月17日礼拜天,当时电视上正在播放美国橄榄球大联盟比赛,其中一个广告是该联盟自己拍摄的,说他们正在使用机器学习技术来分析球迷的想法。广告的结尾,美国橄榄球大联盟展示了自己在亚马逊 AWS 服务上部署的机器学习技术。这是大约三个礼拜之前的一个事情,我觉得它的意义在于,现在机器学习和人工智能技术已经被「炒」的很多了,预计很快就能给橄榄球球迷带来一定影响了。
吴恩达,Landing.AI 首席执行官
AlphaGo 展现出了强大的计算和数据处理能力,但是卡纳基梅隆大学开发的德州扑克人工智能程序 Libratus 则感觉更具创新。从技术观点来看,这个结果令人感到很惊喜。
Andrew Moore,卡纳基梅隆大学计算科学学院院长
Libratus AI 战胜了四位顶级德州扑克选手,这次胜利是非常重要的,因为这意味着人工智能技术有了极大的提升,已经可以考虑对手可能故意误导等手段了。在一个对信息真实性审查越来越严格的世界里,我们看到新一代人工智能对原始事实开始表现出怀疑,这真的是太神奇了。
Geoffrey Hinton,多伦多大学
我认为,2017年,人工智能在很多方面都取得了很大的进展,但是却没什么突破,比如 2014 年就开始说要在机器翻译里应用神经网络,而 AlphaGo 其实也是2016年的。
在我看来,令人印象最深刻的事情有这么几个:
1、神经架构搜索:它使用神经网络实现自动化设计神经网络的「黑魔法」,现在已经开始应用了;
2、使用注意力的机器翻译,无需循环神经网络或卷积;
3、围棋领域里的 AlphaGo 升级版 AlphaGo Zero,它很快就学会了如何以人类的方式下围棋,而且已经成为了目前最好的人工智能围棋引擎。
Greg Diamos,百度高级研究员
今年,给我印象最深刻的就是斯坦福大学的研究人员团队,他们开发出了首个人工智能「放射科医生」,它可以检测心律失常,然后告知人类医师检测结果。我认为,随着技术的发展,人工智能在医疗领域里的应用会越来越多,这令我感到非常惊讶。
Azeem Azhar,Peer Index 创始人 The Exponential View 策展人
2017 年的人工智能大事件,我会选择两件事,他们都非常重视人工智能技术的应用,而且也都能解决一些过去被人们忽视的问题。
第一个是微软研究院的凯特•克劳福德(Kate Crawford),她介绍了机器学习算法是如何出错的,这个问题会加强和扩大现有的人工智能偏见。
第二个是由剑桥大学阿德里安•维尔德(Adrian Weller)发表的一份论文,其中提到了如何建立算法系统,这些算法系统可以反映出人类对公平的直觉如何。我们必须对凯特•克劳福德和阿德里安•维尔德所提到的问题加以重视,并且刺激科技行业接受。
Terah Lyons,Partnership on AI 执行董事
今年,人工智能还是给我们带来了一些令人心痛的时刻,因为在某些边缘化问题上,人工智能的表现似乎并不太好。比如最近,Kristian Lum 就表示从事机器学习的同事有性骚扰行为,这需要在人工智能领域里引起重视,而且多样性问题绝不是一个侧面表现。
科技行业里的性别歧视似乎越来越猖獗,这对人工智能领域也非常有害,甚至会带来灾难性的后果,其中最重要的原因,就是很多排他性的设计会带来比较严重的问题,而人工智能可以很容易地把问题进一步扩大,并且延伸很多糟糕的人类偏见。
我们所有人都有义务把包容性作为创新首选,特别是在人工智能这样一个有潜力带来巨大利益的领域。2018 年,在人工智能尝试解决的所有重大挑战中,包容性应该是要排在第一位的。
Been Kim,谷歌大脑研究科学家
今年,我认为比较受欢迎的最大趋势,是人工智能可以尝试应对一些可解释性的问题,这意味着我们有了一种可以帮助人类理解人工智能模型的方法。
在今年举办的 ICML 上,就设置了人工智能解释性教程和一些相关的研讨会。此外,在 NIPS 大会上,也有研讨会和人工智能解释性的介绍,明年 CVPR 大会和 FATML 会议也都会有相关议程。
Richard Socher, Salesforce首席科学家
也许,2017年最令我感到印象深刻的事情,就是来自于本月初召开的 NIPS 大会上。伦理,成为了人工智能研究领域里最令人印象深刻的核心主题之一。我有必要提醒大家,人工智能是否能够获得成功,重点在于信任、透明和平等的价值观。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06