
1.数据库的技术上,目前我们公司在研究hadoop分层数据库,具体了解不多;外面流行的NoSql非关系型数据库,像亚马逊、谷歌还有一些日本企业都有自己的NoSql数据库;
2.传统关系型数据库的优化,数据库层的优化和上层使用的优化。
数据库层:需要DBA进行优化,减少碎片,进行分区等;
使用层的优化,即优化SQL
从外界因素来看影响SQL有:CPU、RAM、Network、Disk
CPU:SQL的大量order by,大量group by,case when等都会很费CPU,需要CPU进行计算。是否可以使用汇总来减少此问题
RAM:查找的数据量过大,导致内存资源占用过多。
如无where的SQL,select *的SQL,全表扫描等;
频繁的update、insert都会影响内存,每次对SQL的解析都需要一定的时间和空间。采用绑定变量。
Network:过多的DB连接,频繁的DB开关,跨库的关联,大量数据的导出,复杂的SQL等。
Disk:
大数据量的表,建立索引,保证索引的有效性;
减少大表的insert和delete,会造成磁盘碎片,导致磁盘指针的不连续性;
大表的insert和delete会造成索引的失效,必要时先去掉索引再操作增删改;
索引其实是一张表,要保证其精简
索引的建立,最好用在易排序字段,如number,date等,勿varchar;
varchar字段尽量保持长度的一致性,宁可多给出空间;
减少磁盘的读取次数;
对大表禁止顺序性的全表扫描,使用索引;
减少disdinct,用unionall代替union;
Not like,<>,全模糊like,is null,is not null,not in都会使索引失效;
索引上不要使用任何函数,尽量在等号的另一头使用函数;
SQL的书写一致,减少解析时间;
减少嵌套子SQL,使用关联查询;
避免笛卡尔积连接;
避免使用*,数据库需要对*进行一次匹配,会消耗资源,而且并不一定所有的字段都要进行查询或者写入,写入时表结构变化还会导致出错,所以避免*;
全表删除,不要使用delete,使用truncate;
全表分页的效率较低,建议使用分步是分页;
3.在数据读取优化到一定程度后,代码上也可以进行很大的优化。
避免过多的开装箱,使用值类型;
对引用类型的集合,多使用泛型;
避免循环嵌套,和无休止的递归;
避免循环中建立大对象;
对大对象的释放;
4.逻辑上的优化
在需要查询大量数据的时候,可以使用分页;
分页影响到一些图标的产生时,可以借助汇总,先展示汇总信息和图标,然后在进行详情的钻取;
时间空间的相互替换。
5.对常用信息的本地化保存,如QQ第一次加载很慢,但后面登陆会很快。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23