京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据可视化的五条核心原则
数据可视化从200多年前基本饼图发明时的形成至今已走过漫长的历程。如今,由于数据大潮的到来和人们关于数据使用的讨论,一种新的设计语言正在兴起,它可以优美地将大数据中的繁杂简化成既美观又富有意义的可视化图形。
以下五条核心原则。
1.理解数据源
确保了解你工作的数据。这是理解数据至关重要的第一步。你需要对宏观的全局有所理解:为什么收集这些数据?公司对于这些数据赋予什么样的价值?用户是谁?如何能让数据作用最大化?深入理解这些问题,能为创造出既有意义又人性化的可视化信息,打下重要的基础。
2.明确你要讲的故事
好的数据可视化不仅仅是一张美丽的图片,它还能讲述一个任何人都能明白的故事。因此,至关重要的是,你首先需明确你想讲的故事,然后将数据作为一种润色故事的方式。
例如,我们最近帮助瑞典某移动运营商重新设计了之前经常让用户混淆的月度手机账单,使其以用户为中心便于用户使用。该公司希望设计出更为有效易用的话单,而不是继续呈现给用户难懂的一串号码。
3.简单法则
数据可视化是用来告知用户,而非让用户接收不需要的过载信息。作用一名设计者,你的角色就是专注简单,将复杂或者零散的信息变得切实可行,易于理解,极具意义和更人性化的信息。记住,越简单,用户才能越明白。
4.巧用饼图
试试在可视化中键入当前行为与你的理解。会让你的设计被广泛的用户群体接受。饼图被人们广泛使用的原因在于:人们理解它表达的含义。这是一种天生优雅的可视化设计,因它有更大的影响力,且能使人们一看即懂。
5.一种设计驱动的方法
好的数据可视化不仅仅是设计上的杰作,也是帮助人们去解读之前无法触及的内容的一种极具价值的工具,并使这些内容赋有意义和指导性。随着越来越多的公司开始意识到数据的潜在能量,在将一些不清晰的事变成能帮助人们的事物面前,设计将发挥更大的作用。其关键就在于采用用户第一,专注简单的设计驱动方法,创造永不停息的愉悦体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29