
大数据算法的困境
机器学习和深度神经网络,克服了算法设计中人的局限;只要有数据,只要数据中有统计规律,算法就能找到这些规律。人工智能技术近几年的火热,主要得益于机器学习、深度神经网络方面的技术突破,以及大数据技术的成熟。
2013年,美国有一起充满争议的案子,一个因为偷窃罪被判刑的男人把威斯康星法院告了。原因是他被判整整8年有期徒刑,不是因为他的罪行,也不是因为法官的判断,而是因为一个AI(人工智能)认为,他对社会具有“高危险性”。大数据时代,我们关注最多的是数据的安全和隐私,然而,数据加上算法所带来的问题,或许要比安全和隐私重要得多。
大数据让算法前所未有的强大
机器学习和深度神经网络,克服了算法设计中人的局限;只要有数据,只要数据中有统计规律,算法就能找到这些规律。人工智能技术近几年的火热,主要得益于机器学习、深度神经网络方面的技术突破,以及大数据技术的成熟。这些技术的突破使得从前很多被认为机器不可能解决的问题,变得可以解决。过去技术人员开发信息系统,需要将领域知识在头脑中转换为算法和程序。这些技术突破改变了这一现状,消除了对领域知识的依赖。算法可以通过机器学习的方法,从大量数据中自动提取出来,不再需要人来编写。这不仅减少了错误遗漏、降低了开发成本,并且可以随着数据的变化自动更新,而不会因为现实的变化而落伍。
算法存在的问题
算法没有价值判断,最终是人给计算结果加上了价值判断。但是一旦人们把算法给出的结果,用在处理社会关系上,这些结果就对相关的每个人产生了意义。
算法让一部分人掌握了过大的权力。虽然技术突破和大数据让算法开发变得容易,但是获取到足够的数据和计算资源,开发并利用算法,仍然是一件具有相当门槛的事情。能够掌握利用算法的仍限于少数人,这就使得这些少数人在社会生活中相对于其他人占有了极大的优势。为了社会公平,我们对拥有财产优势的人征收更多的税负,对掌握权力的人施加种种制衡,但是我们对拥有算法优势的人如何限制,仍然没有可行的思路。
对算法的迷信。技术突破让算法不需要人编写,虽然减轻了人开发算法的负担,但也让人更难以理解算法。大多数深度学习产生的算法都让人无法理解,但是由于大多数情况下算法是有效的,人们即使不理解,也乐于利用算法。这就产生了一个风险:没人知道算法的边界和失效条件,因此也就不能判断算法何时会出错。由于不理解,使用者往往倾向于忽视这种风险,于是形成了对算法的迷信。威斯康星州的判案系统就是这种情况。
相应的社会约束机制难以跟上。新技术只要有效,很快就会在社会生活中广泛应用,但是新技术往往深刻地改变了人们的生活方式,而与这些改变相适应的社会约束机制,只能在新技术的社会影响日益明确之后,才能逐渐建立起来。社会规范总是滞后于社会现实,在技术快速发展的当今,这种滞后造成的问题尤为显著。今天人工智能对人们日常生活的影响,恰如一百年前汽车普及造成的影响。当美国普通家庭开始拥有汽车很多年之后,道路信号、交通规则、驾照考试等设施和机制才逐渐完善,跟上技术变革的脚步。
在变化中探索秩序。人工智能技术仍在快速发展过程中,对社会生活的种种影响才刚刚开始显现。对此我们既不能因噎废食,阻碍技术发展,也不能放任自流,任由丛林法则支配,而是必须因应技术发展的潮流和社会现实的变化,不断探索调整,兴利除弊,让技术发展始终作为推动社会进步的动力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29