京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用大数据和预测分析优化供应链
大数据和分析可以帮助组织预测未来的供应链中断,并获得优于竞争对手的优势。
如今,业界人士都在谈论大数据,但这究竟意味着什么呢?大数据被定义为极其庞大的数据集,无论是结构化的还是非结构化的数据,都要进行分析以揭示模式、趋势和关联,特别是关于人类行为和相互作用。
在供应链的背景下,大数据可能提供有价值的见解,有助于企业主动预测或快速响应事件或中断。很多情况下,大数据可以带来更多的好处,但最重要的是,大数据可以帮助企业成为客户和供应商更好的贸易伙伴。
尽管进行大量的宣传和推广,一些企业利用大数据来优化供应链的能力证明要比收集数据本身难得多。一些组织仍然不确定如何实现这些大数据集,而另一些组织则以零散的方式利用大数据。
预测未来的供应链中断
大多数供应链系统(如运输管理系统)在很大程度上依赖于固定提前期的概念,但总是有不确定性,特别是在远洋运输方面。
依靠交付时间和其他现有的解决方案(如基于电子数据交换EDI的潜在状态更新,并提醒用户在事件发生后立即中断)限制了组织在问题恶化之前快速修复问题的能力。这将降低客户服务水平,增加货运费用,降低利润率,并需要更多的库存。
虽然供应链中断总是会发生,但新技术的出现提供了预测未来可能发生的中断,并相应地主动采取行动的能力。不可预测的消费者行为、交通模式、港口行为、恶劣天气、自然灾害,以及工人罢工都是可能导致供应链中断的因素,这些事件将会导致供应链中断,从而导致成本增加,让客户服务面临挑战。
采用新技术可以让企业了解预测分析和大数据,从而确定出货时的预计开航时间 (ETA),时间仅需几个小时。这创建了一个更具弹性的供应链,使组织能够做出更加积极有效的决策,从而缩短网络延迟,缩短供应周期,并保护利润空间。
大数据驱动价值
第三方物流(3PL)提供商在利用供应链中的大数据方面变得越来越有效,并开始通过投入资源,与技术提供商建立合作伙伴关系,将大数据应用到其服务产品中,从而创造更多价值。
采用大数据不只是收集信息,还有具备做某事的能力。如今,组织期望在数据和预测分析方面有更好的可见性,这样他们就能做出更明智、更快捷、更高效的决策。除了将数据用于供应链运营之外,组织还可以通过向客户、供应商和其他贸易伙伴提供市场洞察力来将数据转化为价值。
在物流方面,帮助上游和下游合作伙伴增长是至关重要的,这可能与提供消费者情绪和喜好、零售行业的分类见解,以及季节性模式和消费预测一样简单。
就工业采购而言,供应商需要提前几个月进行计划,然而,许多零售商和分销商还无法支持这一点。大数据和预测分析可以帮助供应商在下一个订单范围内规划他们的业务,并将其扩展到12 -18个月。
他们可以提供对下游客户需求和购买行为的见解和分析,而不需要承担太多的风险。提供更好的可见性可帮助客户更好地运营业务,并帮助供应商发展业务。
应用适当的数据科学的重要性
大多数组织认识到大数据的价值和重要性,但由于大量的结构化和非结构化数据而变得不堪重负难以实施。然而,实际上重要和推动价值的数据就是这样做的。可以对大数据进行分析,以获得更有效的业务决策。
许多组织不甘落后,并且在数据中心投入大量资金,却没有如何将数据转化为实际价值的远见。组织在投入大量资金用于数据科学资源之前,应该进行适当的投资并真正理解数据,以便发现潜在的新机遇、如何把握机会,以及可持续和高效运营是至关重要的。
利用大数据获得竞争优势
在组织将资源投入到数据科学部门之前,或者在其从数据科学的角度了解需要的内容之前,建议首先从数据或缺乏的数据中找出最大的机会。
对于投资资源之前的其他建议是组织与其同行厂商、大学甚至是技术供应商进行探讨和审查,这些厂商已经投资并做了哪些事情,这样就可以得出自己的观点。寻找提供“数据科学即服务”的技术供应商的帮助来探索其可能性。发现可以从大数据中获得更好的投资回报的机会,并为组织带来前所未有的竞争优势。
组织采用大数据,可以为供应链带来巨大的好处,所以组织应该积极接受并应用。组织正确实施大数据将会继续以新的效率发展,并将保持竞争力,更加精简,迅速响应,并积极应对供应链中断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06