
利用大数据和预测分析优化供应链
大数据和分析可以帮助组织预测未来的供应链中断,并获得优于竞争对手的优势。
如今,业界人士都在谈论大数据,但这究竟意味着什么呢?大数据被定义为极其庞大的数据集,无论是结构化的还是非结构化的数据,都要进行分析以揭示模式、趋势和关联,特别是关于人类行为和相互作用。
在供应链的背景下,大数据可能提供有价值的见解,有助于企业主动预测或快速响应事件或中断。很多情况下,大数据可以带来更多的好处,但最重要的是,大数据可以帮助企业成为客户和供应商更好的贸易伙伴。
尽管进行大量的宣传和推广,一些企业利用大数据来优化供应链的能力证明要比收集数据本身难得多。一些组织仍然不确定如何实现这些大数据集,而另一些组织则以零散的方式利用大数据。
预测未来的供应链中断
大多数供应链系统(如运输管理系统)在很大程度上依赖于固定提前期的概念,但总是有不确定性,特别是在远洋运输方面。
依靠交付时间和其他现有的解决方案(如基于电子数据交换EDI的潜在状态更新,并提醒用户在事件发生后立即中断)限制了组织在问题恶化之前快速修复问题的能力。这将降低客户服务水平,增加货运费用,降低利润率,并需要更多的库存。
虽然供应链中断总是会发生,但新技术的出现提供了预测未来可能发生的中断,并相应地主动采取行动的能力。不可预测的消费者行为、交通模式、港口行为、恶劣天气、自然灾害,以及工人罢工都是可能导致供应链中断的因素,这些事件将会导致供应链中断,从而导致成本增加,让客户服务面临挑战。
采用新技术可以让企业了解预测分析和大数据,从而确定出货时的预计开航时间 (ETA),时间仅需几个小时。这创建了一个更具弹性的供应链,使组织能够做出更加积极有效的决策,从而缩短网络延迟,缩短供应周期,并保护利润空间。
大数据驱动价值
第三方物流(3PL)提供商在利用供应链中的大数据方面变得越来越有效,并开始通过投入资源,与技术提供商建立合作伙伴关系,将大数据应用到其服务产品中,从而创造更多价值。
采用大数据不只是收集信息,还有具备做某事的能力。如今,组织期望在数据和预测分析方面有更好的可见性,这样他们就能做出更明智、更快捷、更高效的决策。除了将数据用于供应链运营之外,组织还可以通过向客户、供应商和其他贸易伙伴提供市场洞察力来将数据转化为价值。
在物流方面,帮助上游和下游合作伙伴增长是至关重要的,这可能与提供消费者情绪和喜好、零售行业的分类见解,以及季节性模式和消费预测一样简单。
就工业采购而言,供应商需要提前几个月进行计划,然而,许多零售商和分销商还无法支持这一点。大数据和预测分析可以帮助供应商在下一个订单范围内规划他们的业务,并将其扩展到12 -18个月。
他们可以提供对下游客户需求和购买行为的见解和分析,而不需要承担太多的风险。提供更好的可见性可帮助客户更好地运营业务,并帮助供应商发展业务。
应用适当的数据科学的重要性
大多数组织认识到大数据的价值和重要性,但由于大量的结构化和非结构化数据而变得不堪重负难以实施。然而,实际上重要和推动价值的数据就是这样做的。可以对大数据进行分析,以获得更有效的业务决策。
许多组织不甘落后,并且在数据中心投入大量资金,却没有如何将数据转化为实际价值的远见。组织在投入大量资金用于数据科学资源之前,应该进行适当的投资并真正理解数据,以便发现潜在的新机遇、如何把握机会,以及可持续和高效运营是至关重要的。
利用大数据获得竞争优势
在组织将资源投入到数据科学部门之前,或者在其从数据科学的角度了解需要的内容之前,建议首先从数据或缺乏的数据中找出最大的机会。
对于投资资源之前的其他建议是组织与其同行厂商、大学甚至是技术供应商进行探讨和审查,这些厂商已经投资并做了哪些事情,这样就可以得出自己的观点。寻找提供“数据科学即服务”的技术供应商的帮助来探索其可能性。发现可以从大数据中获得更好的投资回报的机会,并为组织带来前所未有的竞争优势。
组织采用大数据,可以为供应链带来巨大的好处,所以组织应该积极接受并应用。组织正确实施大数据将会继续以新的效率发展,并将保持竞争力,更加精简,迅速响应,并积极应对供应链中断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11