京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用大数据和预测分析优化供应链
大数据和分析可以帮助组织预测未来的供应链中断,并获得优于竞争对手的优势。
如今,业界人士都在谈论大数据,但这究竟意味着什么呢?大数据被定义为极其庞大的数据集,无论是结构化的还是非结构化的数据,都要进行分析以揭示模式、趋势和关联,特别是关于人类行为和相互作用。
在供应链的背景下,大数据可能提供有价值的见解,有助于企业主动预测或快速响应事件或中断。很多情况下,大数据可以带来更多的好处,但最重要的是,大数据可以帮助企业成为客户和供应商更好的贸易伙伴。
尽管进行大量的宣传和推广,一些企业利用大数据来优化供应链的能力证明要比收集数据本身难得多。一些组织仍然不确定如何实现这些大数据集,而另一些组织则以零散的方式利用大数据。
预测未来的供应链中断
大多数供应链系统(如运输管理系统)在很大程度上依赖于固定提前期的概念,但总是有不确定性,特别是在远洋运输方面。
依靠交付时间和其他现有的解决方案(如基于电子数据交换EDI的潜在状态更新,并提醒用户在事件发生后立即中断)限制了组织在问题恶化之前快速修复问题的能力。这将降低客户服务水平,增加货运费用,降低利润率,并需要更多的库存。
虽然供应链中断总是会发生,但新技术的出现提供了预测未来可能发生的中断,并相应地主动采取行动的能力。不可预测的消费者行为、交通模式、港口行为、恶劣天气、自然灾害,以及工人罢工都是可能导致供应链中断的因素,这些事件将会导致供应链中断,从而导致成本增加,让客户服务面临挑战。
采用新技术可以让企业了解预测分析和大数据,从而确定出货时的预计开航时间 (ETA),时间仅需几个小时。这创建了一个更具弹性的供应链,使组织能够做出更加积极有效的决策,从而缩短网络延迟,缩短供应周期,并保护利润空间。
大数据驱动价值
第三方物流(3PL)提供商在利用供应链中的大数据方面变得越来越有效,并开始通过投入资源,与技术提供商建立合作伙伴关系,将大数据应用到其服务产品中,从而创造更多价值。
采用大数据不只是收集信息,还有具备做某事的能力。如今,组织期望在数据和预测分析方面有更好的可见性,这样他们就能做出更明智、更快捷、更高效的决策。除了将数据用于供应链运营之外,组织还可以通过向客户、供应商和其他贸易伙伴提供市场洞察力来将数据转化为价值。
在物流方面,帮助上游和下游合作伙伴增长是至关重要的,这可能与提供消费者情绪和喜好、零售行业的分类见解,以及季节性模式和消费预测一样简单。
就工业采购而言,供应商需要提前几个月进行计划,然而,许多零售商和分销商还无法支持这一点。大数据和预测分析可以帮助供应商在下一个订单范围内规划他们的业务,并将其扩展到12 -18个月。
他们可以提供对下游客户需求和购买行为的见解和分析,而不需要承担太多的风险。提供更好的可见性可帮助客户更好地运营业务,并帮助供应商发展业务。
应用适当的数据科学的重要性
大多数组织认识到大数据的价值和重要性,但由于大量的结构化和非结构化数据而变得不堪重负难以实施。然而,实际上重要和推动价值的数据就是这样做的。可以对大数据进行分析,以获得更有效的业务决策。
许多组织不甘落后,并且在数据中心投入大量资金,却没有如何将数据转化为实际价值的远见。组织在投入大量资金用于数据科学资源之前,应该进行适当的投资并真正理解数据,以便发现潜在的新机遇、如何把握机会,以及可持续和高效运营是至关重要的。
利用大数据获得竞争优势
在组织将资源投入到数据科学部门之前,或者在其从数据科学的角度了解需要的内容之前,建议首先从数据或缺乏的数据中找出最大的机会。
对于投资资源之前的其他建议是组织与其同行厂商、大学甚至是技术供应商进行探讨和审查,这些厂商已经投资并做了哪些事情,这样就可以得出自己的观点。寻找提供“数据科学即服务”的技术供应商的帮助来探索其可能性。发现可以从大数据中获得更好的投资回报的机会,并为组织带来前所未有的竞争优势。
组织采用大数据,可以为供应链带来巨大的好处,所以组织应该积极接受并应用。组织正确实施大数据将会继续以新的效率发展,并将保持竞争力,更加精简,迅速响应,并积极应对供应链中断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29