京公网安备 11010802034615号
经营许可证编号:京B2-20210330
STATA软件是一款国际上非常流行的优秀的统计软件,是众多研究机构和公司在数据分析中的首选软件,并被很多国家和国际组织指定为官方使用软件。
STATA强大的统计与计量分析功能、精致的绘图、简单易行的窗口操作、简练便捷的编程、强大的MATA矩阵运算、丰富的网络资源等功能使其成为世界上用户最多的软件之一,被高度评价为“数据分析的操作系统”,可以实现诸多的统计分析方法,如单元统计、多元统计等内容;还包括了许多经典和前沿的计量模型,如单方程回归模型、离散选择模型、分位数回归、时间序列分析、面板数据分析、蒙特卡洛模拟和自举法等。
有效提升论文发表与Stata应用技能
时间:初级:2018年1月13-16日 (四天)
讲师介绍:
连玉君,经济学博士,副教授。2007年7月毕业于西安交通大学金禾经济研究中心,现任教于中山大学岭南学院金融系。主讲课程为“金融计量”、“计量分析与Stata应用”、“实证金融”等。
已在《China Economic Review》、《经济研究》、《管理世界》、《经济学(季刊)》、《金融研究》、《统计研究》等期刊发表论文60余篇。连玉君副教授主持国家自然科学基金项目(2项)、教育部人文社科基金项目、广东自然科学基金项目等课题项目10余项。
目前已完成Panel VAR、Panel Threshold、Two-tier Stochastic Frontier等计量模型的Stata实现程序,并编写过几十个小程序,如xtbalance、winsor2、bdiff、hausmanxt、ttable3、hhi5等。
初级班课程大纲
|
专题名称 |
授课内容 |
|
第1讲(3小时) Stata简介 |
数据的导入和导出 执行指令和基本统计分析 do文件和log文件的使用 帮助文件的使用和外部命令的获取 一篇范例文档 |
|
第2讲(3小时) 数据处理 |
数据的横向合并和纵向追加 重复样本值、缺漏值和离群值的处理 基本统计量的呈现 基本统计分析(组间均值差异和中位数差异检验) 文字变量的处理 大型数据的处理范例(GTA数据库和工业企业数据库) |
|
第3讲(3小时) Stata程序 |
局域暂元和全局暂元(local, global) 控制语句(条件语句、循环语句) Stata中的各类函数 分组回归分析 范例:盈余管理程度的估算、现金持有调整系数的估算 |
|
第4讲(3小时) 普通最小二乘法 (OLS) |
线性回归模型估计方法(OLS) 假设检验和统计推断 Bootstrap、Jackknife及稳健性标准误的获取 虚拟变量 |
|
第5讲(3小时) 模型的设定和解释 |
交乘项和平方项的使用及解释 R2分解和贡献度分析 分组回归和组间系数差异检验 估计结果的呈现和分析 范文2篇 |
|
第6讲(3小时) 内生性问题及估计方法: IV-GMM 倍分法(DID, D-in-D) |
工具变量法(IV) 广义矩估计法(GMM)简介 内生性检验:是否存在内生性 过度识别检验:工具变量的合理性 倍分法(Difference in Difference)简介 PSM-DID 应用实例(介绍2篇论文) |
|
第7讲(3小时) 静态面板数据模型 |
静态面板模型:固定效应和随机效应 基于Bootstrap的Hausman检验 异方差和序列相关(Bootstrap、Cluster调整标准误) 包含内生变量的固定效应模型 实证分析中的常见问题 应用实例(介绍3篇论文) |
|
第8讲(3小时) 论文写作与发表专题 |
Endnote和Google Scholar的使用 论文的选题 如何梳理和评述文献 研究贡献的陈述 研究设计与论文的修改 修改报告的撰写 (与审稿人有效沟通) |
高级班课程大纲
|
第1讲(3小时) 动态面板模型 面板VAR模型 |
一阶差分GMM估计量(FD-GMM) 序列相关检验和过度识别检验(Sargan检验) 面板VAR模型简介 冲击反应函数 (IRF)、方差分解 (FEVD) 应用实例(介绍3篇论文) |
|
第2讲(3小时) 面板门槛模型 |
Bootstrap简介 截面门槛模型(Cross-sectional Threshold Model) 面板门槛模型(Panel Threshold Model) 应用实例(介绍2篇论文) |
|
第3讲(3小时) Logit模型 |
Logit模型简介 模型设定、估计方法和结果的解释 多元Logit模型 (Multinomial Logit) 有序Logit模型 (Ordered Logit) 应用实例(介绍2篇论文) |
|
第4讲(3小时) 内生性问题专题I: Heckman选择模型 处理效应模型 倾向得分匹配分析(PSM) |
Heckman选择模型(Heckman Selection Model) 处理效应模型(Treatment Effect Model) 倾向得分匹配分析(Propensity Score Matching, PSM) 配对方法:精确配对、半径匹配、最近邻匹配等 共同支撑假设和平行假设 应用实例(介绍2篇论文) |
|
第5讲(3小时) 内生性问题专题II: 合成控制法 (Synthetic control methods) |
合成控制法简介 精讲一篇经典论文(Stata实现过程):Abadie, A., A. Diamond, J. Hainmueller, 2010, Synthetic control methods for comparative case studies: Estimating the effect of california's tobacco control program, Journal of the American Statistical Association, 105 (490): 493-505. |
|
第6讲(3小时) 内生性问题专题III: 断点回归分析(RDD) |
Regression Discontinuity Design (RDD) 简介 范例:2篇文章 |
|
第7讲(3小时) 学术论文精讲 Faulkender and Wang (2006, JF) |
Faulkender, M., R. Wang, 2006, Corporate Financial Policy and the Value of Cash, Journal of Finance, 61 (4): 1957-1990.
|
|
第8讲(3小时) 课题标书的撰写 |
评审专家的习惯和偏好 关于选题和子课题的设定 研究基础、研究目标、研究内容、研究难点 特色和创新点的提炼 标书的结构和标书的修改 经验分享:一份中标的自科标书 |
1. 无论报初级班还是高级班,缴费成功后都享受如下优惠:
√ (a)赠送与所报课程相同的stata视频教程,
即报初级班送初级班视频,报高级班送高级班视频,报全程送【初级+高级+论文攻略】视频;
√ (b)5折优惠购买未赠送的其他Stata视频;
2,现场班老学员9折优惠;
6,优惠2,3,4,5不叠加。
PS:根据报名缴费顺序安排现场座位。
报名流程:
1. 点击“初级/高级/全程班报名”网上提交报名信息,报名时请留言报全程还是初级,高级~
2. 电话确认,订单缴费;
3. 缴费确认,开课前一周发送软件准备,电子版讲义;
联系方式:
魏老师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21