京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于Execl导入大数据量文件的处理思路
Execl作为微软的早期产品,功能强大的同时,性能也相应的差很多,处理大数据量时,尤其明显。最近项目中有一个需求,要求导入人员信息,Execl的数据量大概5000左右,但是会关联其他表,查询出100万级别的数据量,插入到值表。并且这个过程是系统管理人员每月不定期在页面导入的。系统设计的要求是10秒内完成。
简单说一下我们的思路,这里主要说思路,更细节的技术问题,可以和我联系:
第一步:把Excel转成CSV文件,这里可以是系统使用人员手动转换,也可以由程序来转换。
然后先导入Excel中的5000条信息到人员信息表。后台数据库用存储过程实现,使用merge的方式进行增量导入。
第二步:关联其他表,然后将符合条件的结果集作为值直接插入到临时表,这个过程也是在存储过程中实现。这里有一个技巧,把SELECT的结果集,作为INSERT语句的VALUES,这样能比逐条处理速度要快很多。
第三步:使用MERGE的方式,将临时表的数据,增量导入目标表。这个过程也在存储过程中
实现。
以上的案例,数据校验的逻辑不是很多,只有一个重复性校验,所以使用的是MERGE方式。如果业务上的数据校验逻辑比较复杂,可能性能就会降低很多,这时就要考虑其他解决方案。
上面的SQL关键代码,基本上都放在了存储过程中,之所以这样做,就是为了提高性能。在进行大数据量的操作时,每减少一次数据库交互,可能就会明显提高性能。我们都知道,存储过程存储在数据库服务器端,属于已经预编译过的SQL,当调用存储过程时,只需要传递参数,而不需要再重新编译SQL。并且,把多个SQL放在一个存储过程中,减少了应用服务器与数据库服务器的交互次数。
关于上面的案例,还有2点要说明。
1,在处理大数据量的文件时,尽量减少逐行扫描的方式,,而是采用批量LOAD/IMPORT,或者批量MERGE/INSERT的方式。
2,建适当数量的索引,无论对于INSERT操作,还是MERGE操作,都会起到事半功倍的效果。
最近项目中在进行性能优化,关于Execl的导入导出,以及大数据量的查询,都研究了好长时间,之前的查询慢、导入慢,导出慢的问题,基本上都解决了,性能提高了不少,后面有时间会慢慢和大家分享。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06