京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作为即将被机器人取代的第一批职业人,该如何选择
如果你是一名人类工人,那么很不幸地通知你,机器即将在20年内逐步取代你的工作:到2030年,机器人和人工智能将“淘汰”所有人类工人。
近日,麦肯锡全球研究院(McKinsey Global Institute)在周三发布的报告中称,随着科技的进步,机器人将会取代全球8亿个工作岗位,未来全球大概有3.75亿人口将面临重新就业,其中中国占1亿。
麦肯锡报告中分了11个行业大类,看不同国家未来在这些行业的岗位需求变化。其中涉及到创意工作、技术类工程师、管理类以及社会互动类的岗位需求增长明显,因为机器还无法在这些领域取代人类。另一方面,那些在可预测环境中进行物理活动的部分岗位需求将下降明显。
(来源于麦肯锡报告)
(来源于网友摄于某次人工智能大会)
至于人工智能是如何取代人类的?C君认为网友@朱帝庞克 曾经的一张图通过对职业技能按功能分类以后,根据不同职业的属性和岗位要求等四个层面进行细分,总结出的关于机器人的入侵人类职业的路线很具有代表性。
看到人工智能的来势汹汹,很多人甚至开始产生自我怀疑,产生了对机器人的异样的“敬畏”,1969年日本机器人专家森昌弘提出“恐怖谷理论”,为什么人们如此“惧怕”机器人?
根据森昌弘的说法,随着机器人的拟人程度增加,人类对它的好感度就会改变。通过森昌弘图表可以发现,恐怖谷理论就是随着机器人到达“接近人类”程度时候,人类好感度突然下降的范围。会活动的类人体比静止类人体变动的幅度更大。
除了人工智能除了“惧怕”,我们还应该更理性的思考自己的定位和自我职业规划。
麦肯锡报告中也特别指出,到2030年中国将有至少1.18亿人的岗位被机器人取代,而其中700-1200万人需要转换职业(这意味着他们原有的岗位彻底被机器人取代,不再具有人工价值)。而1亿多人口面临再就业,就意味着1亿多人口需要掌握新技能,学习新技术,提升自身的适应时代发展的职业技能与技巧。
(图为成功的人工智能转型需要因素,来源麦肯锡报告)
经过C君采访,CDA数据分析研究院的老师们纷纷指出:个人职业转型关系着自身职业发展,转型就意味着自我投资,选择依旧需要十分谨慎。
顺应人工智能发展的大潮,经管之家联合旗下CDA数据分析师教育品牌成立AIU人工智能学院(AI University),为广大的数据科学家、数据分析师、机器学习工程师、大数据分析师、人工智能工程师等岗位的从业者提供众多优质在线课程,无疑这给很多转型人员一个新的选择和机会来提升自我,适应时代发展对人才的需求。
推荐学习书籍
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11