京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作为即将被机器人取代的第一批职业人,该如何选择
如果你是一名人类工人,那么很不幸地通知你,机器即将在20年内逐步取代你的工作:到2030年,机器人和人工智能将“淘汰”所有人类工人。
近日,麦肯锡全球研究院(McKinsey Global Institute)在周三发布的报告中称,随着科技的进步,机器人将会取代全球8亿个工作岗位,未来全球大概有3.75亿人口将面临重新就业,其中中国占1亿。
麦肯锡报告中分了11个行业大类,看不同国家未来在这些行业的岗位需求变化。其中涉及到创意工作、技术类工程师、管理类以及社会互动类的岗位需求增长明显,因为机器还无法在这些领域取代人类。另一方面,那些在可预测环境中进行物理活动的部分岗位需求将下降明显。
(来源于麦肯锡报告)
(来源于网友摄于某次人工智能大会)
至于人工智能是如何取代人类的?C君认为网友@朱帝庞克 曾经的一张图通过对职业技能按功能分类以后,根据不同职业的属性和岗位要求等四个层面进行细分,总结出的关于机器人的入侵人类职业的路线很具有代表性。
看到人工智能的来势汹汹,很多人甚至开始产生自我怀疑,产生了对机器人的异样的“敬畏”,1969年日本机器人专家森昌弘提出“恐怖谷理论”,为什么人们如此“惧怕”机器人?
根据森昌弘的说法,随着机器人的拟人程度增加,人类对它的好感度就会改变。通过森昌弘图表可以发现,恐怖谷理论就是随着机器人到达“接近人类”程度时候,人类好感度突然下降的范围。会活动的类人体比静止类人体变动的幅度更大。
除了人工智能除了“惧怕”,我们还应该更理性的思考自己的定位和自我职业规划。
麦肯锡报告中也特别指出,到2030年中国将有至少1.18亿人的岗位被机器人取代,而其中700-1200万人需要转换职业(这意味着他们原有的岗位彻底被机器人取代,不再具有人工价值)。而1亿多人口面临再就业,就意味着1亿多人口需要掌握新技能,学习新技术,提升自身的适应时代发展的职业技能与技巧。
(图为成功的人工智能转型需要因素,来源麦肯锡报告)
经过C君采访,CDA数据分析研究院的老师们纷纷指出:个人职业转型关系着自身职业发展,转型就意味着自我投资,选择依旧需要十分谨慎。
顺应人工智能发展的大潮,经管之家联合旗下CDA数据分析师教育品牌成立AIU人工智能学院(AI University),为广大的数据科学家、数据分析师、机器学习工程师、大数据分析师、人工智能工程师等岗位的从业者提供众多优质在线课程,无疑这给很多转型人员一个新的选择和机会来提升自我,适应时代发展对人才的需求。
推荐学习书籍
《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门!

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04