
浅析机器学习的主题模型和语义分析
下面和大家分享下机器学习中LDA主题模型的心得,首先从大体上来说假设有400篇文档,每一篇文档后面都m个主题,可以是 医学,教育,军事。。 那么对这400篇文档我们提取出它的词库,假设一共有L个词
那么每一个主题后面都对应着一个词库,我们可以理解为每一个主题后面都对应着L维的一个词分布。好的接下来我们拿到一篇文档,它后面有个主题分布是m维的,那么我们从这m维的主题分布中根据分布选出一个主题,然后这个主题背后又有一个L维的词库分布,再从这个词库分布中选出一个词。然后不断地迭代,这就是LDA总体在干的事情。总体看上去好像不难,不过具体讨论到各个主题分布,以及相应的词分布时可能就有点绕了,LZ也是花了一些力气才把它理解
那么接下来我们先讨论一个叫做beta分布东西,那么对它进行一个高维推广就是一个狄利克雷分布,这个分布,有了这两个东西,其实说白了,主题分布就一个狄利克雷(简记为dir)分布乘上一个多项分布,根据共轭分布,所以就得到一个新的狄利克雷分布,这个dir分布那么他有个参数alpha需要调参,当这个参数大于1,那么一篇文档的主题就越不明显,如果这参数小于1,那么这篇文档的主题就更加突出。接下来我们对于词分布做同样的事情,每一个词都是一个参数为alpha2的dir分布,好了那么主题分布有了,关于我们文档主题的个数m和主题分布alpha和alpha2需要自己调参的,根据实际情况。
好了那么词分布有了,主题分布有了,我们就能做开头说的事情了,对于一篇文档,更加dir的主题分布选出主题,再根据主题后面的词分布选出词,那么我们就能选出这个主题在这篇文档中的词,或者这个词的主题关于其中的公式推动请允许LZ偷个懒(哈哈哈)很多文献中都有相关推导,其实是LZ找不到文档了
接下来我们说gibbs采样,其实也可以说得很简单,就是假如一篇文档中有诺干个词,那么我们把其中一个词去掉z,然后看其他词对于主题分布,那么我们就能求在去掉z词之后词z的主题分布,然后从这个分布中根据概率选出一个主题,这就是这个词的主题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23