京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python变成编程语言中的黑马,再不学习真晚了
GitHub 每年都会在年度盛会中推出数据报告,其中列出了一些年度的数据,包括其网站中最受欢迎的编程语言、开源项目等。今年的数据更是让人眼前一亮,Python 这匹编程语言中的黑马,势不可挡!
值得注意的是:Python已代替 Java从去年的第三突进了第二,相比去年它新增了40% 的PR数,近几年Python的增长势头一直非常迅猛。
数据分析职场新人,精通一门语言至关重要。写个web服务可以用Python、 写个服务器脚本可以用Python、 数据清洗和网络爬虫可以用Python、 做机器学习数据挖掘可以用Python等等,Python 作为 AI 时代头牌语言的位置基本确立。
甚至有些省份信息技术教材不会再使用晦涩难懂的VB语言,而是改学更简单易懂的Python语言,Python语言将成为学习的一种趋势,所以说人生苦短,我用Python。
2018年1月12日覃老师主讲Python数据挖掘深圳班,深受往期学员好评,能够快速掌握Python数据分析和数据挖掘(含机器学习)的思想和技术。
一、课程特色
1.全程没有艰深的公式,几乎全部以实际案例带动启发理解,以通俗易懂的语言讲清楚深刻的数据分析和挖掘思想,随时互动、答疑解惑。
2.注重学以致用、注重应用场景再现。把工作中常见的数据分析模型和案例加以剖析,使得学员在实际工作中很快能上手进行实际问题的解决。
3.注重实际工作经验分享,让学员在工作学习中少走弯路,以培养兴趣为引导、以阐明基本原理思想为基础,让学员在数据分析中有应万变的能力。
二、授课老师
覃老师,早年毕业于中国人民大学统计学院,近20年来一直进行着数据分析的理论和实践,熟悉数据分析与建模,擅长使用Python、R语言、SAS和Spark解决大数据建模及算法优化难题,积累了大量实践案例,经验丰富;善于用逻辑贯穿数据分析过程,把深奥的思想和方法用通俗易懂的语言讲述清楚透彻;善于用数据分析计算机程序,实现从数据到结论到预测的落地过程。2010 年至今培养了上万名(包括首批)使用R语言、SAS和Python等工具实现数据分析和挖掘的专业人士,帮助他们在数据挖掘领域提升工作技能或实现就业。
覃老师曾在某世界500强金融业公司工作,期间曾带队负责开发国内首款基于数据分析建模、随机模拟和最优化精确计算的金融年金产品,该产品销售额持续领跑同业市场多年,获得金融产品创新大奖。
覃老师培训或完成过数据分析和挖掘项目的企业有:中国人寿、陆金所、中国建设银行、汇丰银行、北京银行、渤海银行、宁波银行、吴江农商行、中国移动等。
三、课程大纲
第一阶段: Python 基础精要,零基础也能学会
1. 语法初步
2. 列表、字符串和元组
3. 集合与字典
4. 条件和循环语句
5. 若干重要内置函数应用
6. 文件操作
7. 函数及其应用
8. 正则表达式
9. 数据库和 Python
10.排序算法、 动态规划算法、递归算法等算法
第二阶段:numpy、pandas等进行数据清洗和整理,充分统计分析数据
1. 整理数据(切片、产生随机数、复制、广播、排序等)
2. 数据索引和选择的各种方法
3. 数据的分组、分割、合并、变形
4. 缺失值和空值的数据处理
5. 时间序列数据处理、建模和预测(ARIMA)
6. 含中文数据的处理
7. 数据去重、去离群值
8. R语言和Python(pandas)数据整理和建模的比较
9. 描述统计和推论统计分析
1. 文本挖掘原理和案例(Logistic 回归模型对文本的分类)
2. 预测分析核心算法(图片的K-means聚类分析)
4. 概率统计(二维手写数字识别 KNN方法)
5. 数据可视化(推荐系统和精准营销 最近邻方法、协同过滤)
6. 金融建模分析(数据可视化的各种情形)
7. 客户画像和精准营销(新闻的文本分类 TF-IDF准则、旅游新闻个性化推荐)
8. 算法和模型的优化(手写识别)
9. 模型精度评估和提升(朴素贝叶斯决策)
10.特征选取的方法(酒的品质分类预测)
11.最佳K-means分类数(机器学习的格点搜索和参数寻优)
12.交叉验证(惩罚线性回归分类器)
13.不平衡数据处理(使用支持向量机识别和分类)
14.XGBoost 使用案例(金融时间序列预测)
15.贝叶斯分析(机器集成学习算法)
16.逼近和最优化(随机模拟)
17.自然语言概率图模型(用户流失预警)
18 马尔科夫&蒙特卡罗(量化投资实战)
四、课程安排
上课时间:2018年01月12-14日
上课地点:深圳市南山区科技园北区科技北一路17号摩比大厦
现场费用:2800/1800元(学生价格1800元 仅限全日制本科生及硕士研究生)
直播费用:1800元/人(同步上课时间 课程内容)
每天授课:上午9:00-12:00;下午13:30-16:30;16:30-17:00(答疑)
五、课程优惠
1.现场班老学员9折优惠;
2.同一单位三人以上同时报名9折优惠。
以上优惠不叠加
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12