
SPSS聚类分析:K均值聚类分析
一、概念:(分析-分类-K均值聚类)
1、此过程使用可以处理大量个案的算法,根据选定的特征尝试对相对均一的个案组进行标识。不过,该算法要求您指定聚类的个数。如果知道,您可以指定初始聚类中心。您可以选择对个案分类的两种方法之一,要么迭代地更新聚类中心,要么只进行分类。可以保存聚类成员、距离信息和最终聚类中心。还可以选择指定一个变量,使用该变量的值来标记个案输出。您还可以请求分析方差F统计量。
二、聚类中心(分析-分类-K均值聚类)
为获得最佳有效性,可取一个个案样本并选择迭代和分类方法确定聚类中心。选择最终聚类中心另存为。然后恢复整个数据文件并选择仅分类作为方法,并选择读取初始聚类中心来源以使用该样本估计的中心对整个文件分类。您可以写入和读取文件或数据集。可以在同一会话中继续使用数据集,但不会将其另存为文件,除非在会话结束之前明确将其保存为文件。数据集名称必须符合变量命名规则。
三、迭代(分析-分类-K均值聚类-迭代)
注意:只有在您从“K均值聚类分析”对话框中选择了迭代和分类方法的情况下,这些选项才可用。◎最大迭代次数。限制K均值算法中的迭代次数。即使尚未满足收敛准则,达到迭代次数之后迭代也会停止。此数字必须在1到999之间。◎收敛性标准。确定迭代何时停止。它表示初始聚类中心之间的最小距离的比例,因此必须大于0且小于等于1。例如,如果准则等于0.02,则当完整的迭代无法将任何聚类中心移动任意初始聚类中心之间最小距离的2%时,迭代停止。◎使用运行均值。允许您请求在分配了每个个案之后更新聚类中心。如果不选择此选项,则会在分配了所有个案之后计算新的聚类中心。
四、保存(分析-分类-K均值聚类-保存)
1、聚类成员。创建指示每个个案最终聚类成员的新变量。新变量的值范围是从1到聚类数。
2、与聚类中心的距离。创建指示每个个案与其分类中心之间的欧式距离的新变量。
五、选项:(分析-分类-K均值聚类-选项)
统计量。您可以选择以下统计量:初始聚类中心、ANOVA表以及每个个案的聚类信息。◎初始聚类中心.每个聚类的变量均值的第一个估计值。默认情况下,从数据中选择与聚类数相等的分布良好的多个个案。初始聚类中心用于第一轮分类,然后再更新。◎ANOVA表.显示方差分析表,该表包含每个聚类变量的一元F检验。F检验只是描述性的,不应解释生成的概率。如果所有个案均分配到单独一个聚类,则ANOVA表不显示。◎每个个案的聚类信息.显示每个个案的最终聚类分配,以及该个案和用来对个案分类的聚类中心之间的Euclidean距离。还显示最终聚类中心之间的欧氏距离。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10