
大数据和实时分析的算法分类
如今,大数据技术的发展和进步开辟了收集和传输大量的数据更有效的新方式。这场革命促进了实时算法和方法的研究和发展。传统上,机器学习算法并不是专为实时处理而设计的。事实上,数据的科学竞赛(如Netflix,Kaggle)由于算法昂贵,并且不切实际的使用,并且计算量很大,这往往屡受诟病。这是植根于感知的准确性是更重要的,该算法的速度作为原始设置的数据挖掘是离线的,往往是分批计算。大数据的出现使其开始有了改变,随着越来越多的算法涌现,对一个可扩展的方式重新考虑。大多数时间的可扩展性,单独不妥协的算法的准确性,作为计算其本质上是相同的。大数据分析的实时处理带来了一个更根本的变化,因为它限制了可以在这种情况下可以采用的算法的计算复杂度。一个实时的流媒体算法应该满足以下条件:它应该在一次处理一个例子中,最多检查它一次,使用有限的内存量,在有限的时间内工作,并随时在任何时候进行预测。
为了满足这些要求,流媒体算法设计成为了一种时尚,一个学习的模型不断更新,以反映来自流媒体传入的例子。在处理一个传入的例子后,无论数据稀疏,能够产生预测的算法是必需的。对于流数据的前沿方法有来自许多不同的方向,在网上学习,随机线性代数,云计算的分布式的优化方法,甚至直到多类噪音和杂散数据的存在分类问题。一般来说,这些方法并不是特别有效,但预测的某些部分可能基于预先计算的模型。事实上,离线在线周期是一个传统机器学习和实时分析之间的良好折衷,因为它推动其通过该方法的在线部分,并作为新的观测进来细化模型离线的方法。
增量学习算法代表发适合于实时分析所提出的要求的一种方法。从本质上说,这些算法有一个离线的核心模型,可以回顾历史数据,进行新的观察,并逐步进入模型。为了保持模型的快速增量更新,这只是部分更新基于概念漂移是在流的检测模型,然后在预定的时间开始全面更新脱机。这使系统对新的观察迅速作出反应,这是速度和准确性之间的妥协。要注意,这取决于所采用的算法的类型,有可能更新到充分建模,在这种情况下,没有必要保持一个离线部分的算法。事实上,这使得增量算法的在线学习算法的主要标准是它是否能够更新模型,并产生实时的预测。
实时分析已被应用在各种各样的场景,包括社交媒体,金融和各种科学学科被采用。然而,可以处理大量的实时数据的工具仍然稀缺,主要是内部解决方案。
分类:
Hoeffding选项树是一个渐进的决策树算法。Hoeffding树利用的事实是一个小样本往往是足够来选择最佳的分裂特性。
朴素贝叶斯是一个非常简单的和计算上轻型分类器,该模型的更新和新的样本的分类可以实时进行。朴素贝叶斯是增量学习的一个很好的例子,没有一个离线组件,因为这种模式能够产生没有预测的历史数据,从而提高新的观测能力。
集群:
StreamKM++计算该数据流的一小的加权样品,它使用的k均值++算法作为随机播种技术来选择所述第一簇的值。
D-流使用在线组件,每个输入数据记录映射到网格和离线组件计算网格密度和集群基于密度的网格。该算法采用密度衰减技术来捕获数据流的动态变化。
回归:
LDA增量更新时,新样本到达LDA的最小二乘解。这种方法的优点在于,它执行其导致批次LDA的确切最小二乘解模型的完全更新。
SAIRT是二元回归树的增量版本。面对未知的参与力度,如逐步和突然漂移功能,在功能,噪音和虚拟漂移的某些区域变化的数据流时,它适应的感应模式。它监视节点和忘记实施例的从选定区域,存储在关联到树的叶子本地窗口,其余的是有用的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26