
企业应用大数据的三重境界:数据·分析·成果
近几年大数据变得越发重要,已成为企业发展不可缺少的要素,同时直接影响甚至改变着我们的生活。当前,处理数量庞大、增长迅猛、种类繁多的数据成为众多企业面临的挑战。Teradata天睿公司作为全球领先的分析解决方案与咨询服务供应商,基于客户需求,提供领先、全面、有效的解决方案,帮助企业获取商业洞察力,并且将之转化为行动力,创造商业价值。
数据·分析·成果 发现价值到创造价值
在我国乃至全球,很多企业都非常认可数据的价值,持续在做数据积累方面的建设,开发或购买了很多系统,如ERP、CRM等。但这些企业存在一个普遍的问题,那就是拥有如此庞大的数据,却不知如何利用。基于海量数据,利用分析手段获取少量且有效的数据,作用于业务以产生最大价值,是所有企业希望看到的结果。但这个过程真正做起来,不是易事。
Teradata天睿公司大中华区副总裁、咨询及服务部门总经理唐青(Janet Tang)表示,简单、量少、信息量相对也少的数据中得出的分析结果是有限的,在具备一定规模且流动的数据环境中得到的分析结果才更有价值。流动数据具有多元化和分析效率两个层面,企业想要得到希望的成果,但挡在前面的是超大规模且多元化数据分析和整合的高门槛。
那么创造价值的过程,就要借力Teradata这样的大数据分析的供应商了。唐青表示,针对多种格式的数据进行分析,会涉及到对数据来源和文本数据的识别。了解用户在使用企业产品和服务过程中的路径情况很重要,如某客户开了卡,有无消费,有无购买其他的分期贷款等。
通过对用户行为的路径追踪,可分析出谁和这个用户有关联,哪些因素会影响其购买行为。企业级应用和消费级用户区别在于,企业级的关系图谱非常复杂,数量级也是指数级增长, 如电信公司的某个分公司就可以梳理几亿条关系图谱。面对这种多种形式的分析,初创公司可能很难驾驭。Teradata的愿景就是帮助企业做分析,让企业清楚地知道客户是谁,谁和这个客户有关联,以及捕获这个客户所有信息、活动信息和活动信息所涉及的渠道。
帮助企业打破数据的桎梏,驱动业务增长
愿景是美好的,但要实行还是要面临业务、人才、架构和部署等方面的挑战。唐青表示,从业务角度来看,我们是否懂得企业的业务场景,具体到哪个业务场景需要改进。从人才资源方面看,如何用合理薪资,招到在操作和执行层面都有很好洞察力的人员。从架构层面看,数据源很多,交互时间变得很快,形式很多,所以对架构设计提出了很高的要求。生态圈的架构师,怎样能够把各种复杂场景的架构设计出来。这里包含来自客户的挑战,如企业架构凌乱且孤立,如何从中寻找统一和协同。在部署过程中,考量性能、流动、成本以及扩展性的同时还要考虑整个体系架构如何在混合云中建设。
唐青表示,Teradata现在正在实施五级转型:
提供业务分析解决方案。助力企业达到可以回答其用户问题的能力,从业务视角、数据模型来寻找客户的业务场景。
业务价值框架。对于咨询公司而言,这是一个重要的、指导性的框架。
专业的数据科学家。这些人才对工具掌握的很好,并且有很强的思维能力,能够把分析带到业务应用中去。
生态圈架构师。这些人会比企业咨询架构师的视角更宽阔、洞察力更有深度。
引入混合云。Teradata大数据平台体系架构,可支持混合云,在云端灵活的做适配。
案例解析 从企业视角解读数据分析的价值
唐青分享了银行的案例,从中我们可以更清晰地看到:数据·分析·成果,企业应用大数据的这三重境界。
过去银行只需通过扩大规模就能提升业绩。现在很多银行开始以客户为中心,以客户需求为导向,优化整个营销体系,打通产品渠道。就像Teradata一样,面向行业同时面向客户,所以在每个客户现场都有合作伙伴或者顾问,都有相配比的生态系统。最终,让所有客户的需求变成商机、变成业务诉求、变成架构实现。传统的银行营销方式,大多是从产品视角来拓展,看把产品卖给哪些客户合适,现在我们从客户视角来看,每个客户都有产生额外产值,增加收入的可能。
唐青表示,Teradata为银行建立客户精细化管理框架,分析每一个客户,把客户进行分类。这样可以做的事情很多,如从中识别哪些是重要客户,哪些是流失客户。在流失客户中识别出谁贡献最大,即使和其中一些失去联系,也可以从做了闭环的网点重新建立联系,挽回流失的客户。
通过银行的客户单一视图系统,客户经理能够及时获得银行用户的基本信息、交易信息及其特征标签,清楚地知道哪些是新客户,哪些客户可能会流失,哪些是睡眠客户。假如银行是上千万级,这样做,哪怕只挽回一个点也是十几万。
试想,如果为每个用户都做画像,清楚的知道整个的生命周期的同时,把其所有的渠道都关联在一起,那么CRM系统就形成了闭环。
这样一来,银行就可以了解客户处于哪个生命周期,有针对性地进行服务。对新用户进行品牌宣传,对衰退期的用户分析流失原因,最重要的是可以做更精准的营销。
写在最后:
未来,银行不仅使用内部数据,可能还会引入一些外部数据对客户进行更精细化的评级。Teradata提供行业领先的大数据解决方案,不仅包括结构化数据的处理及分析方法,还提供非结构化数据的分析手段及方法,更精确地描述客户特征甚至客户的族群标签。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04