京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘中,分类与聚类的区别
本文对数据挖掘中,极为常见的两类算法:分类与聚类,做个梳理。
首先,来看看分类和聚类各自的一些定义描述。
分类(classification ):
分类算法需要学习,它通过学习找出描述并区分数据类的模型,以将模型应用于预测标记未知的对象类。即从历史数据纪录中通过学习,自动推导出对给定数据的推广描述,从而能对未来数据进行预测。
分类的目的产出,是一个分类函数或分类模型,亦称分类器,可以把数据库中的数据项映射到预设类别其中一个。
分类器通过训练样本数据集来构造。训练集由一组元组构成,每个元组是一个若干字段(又称属性或特征)值组成的特征向量,并包含有一个类别标记。一个具体样本的形式可表示为:(V1,V2,…,Vn; c);其中Vi表示字段值,c表示类别。
常见分类器的构造方法有决策树、贝叶斯、ANN等。
可通过一下标准来对分类效果进行评估:
1)准确率。模型正确地预测新样本的类标号的能力;
2)计算速度。包括构造模型以及使用模型进行分类的时间;
3)强壮性。模型对噪声数据或空缺值数据正确预测的能力;
4)可伸缩性。对于数据量很大的数据集,有效构造模型的能力;
5)模型描述的简洁性和可解释性。模型描述愈简洁、愈容易理解,则愈受欢迎。
预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务。而对于描述型的分类任务,模型描述越简洁越受欢迎。
另外,分类的效果会样本的特点有关,有的数据噪声大,有的有空缺值,有的分布稀疏,有的字段或属性间相关性强,有的属性是离散的而有的是连续值或混合式的。不存在某种方法能适合于各种特点的数据。
聚类(clustering):
聚类是如下所述的一个过程:
1) 根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的对象集合——簇
2) 对簇进行描述
聚类的目的是使得同簇的样本之间应该相似度最大化,而不同簇的样本应相似度最小化。
聚类的目的旨在发现空间实体的属性间的函数关系,表示挖掘所得知识的方程式,以属性名为变量。
常见聚类算法包括:k-means聚类、层次聚类、SOM聚类、FCM聚类等。
分类与聚类的不同:
分类
1) 预设类别,类别数不变
2) 样本有标记
3) 有指导学习
4) 适合类别或分类体系已经确定的场合
聚类
1) 无需预设类别,类别数不确定,类别在学习中生成
2) 样本无标记,学习中标记
3) 无监督学习
4) 合不存在分类体系、类别数不确定的场合
5) 是一种探索式的学习
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12