
文本分类常用算法比较
本文对文本分类中的常用算法进行了小结,比较它们之间的优劣,为算法的选择提供依据。
一、决策树(Decision Trees)
优点:
1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。
2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。
3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。
4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。
5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。
6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
7、可以对有许多属性的数据集构造决策树。
8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。
缺点:
1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。
2、决策树处理缺失数据时的困难。
3、过度拟合问题的出现。
4、忽略数据集中属性之间的相关性。
二、人工神经网络
优点:
分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。
缺点:
神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。
三、遗传算法
优点:
1、与问题领域无关切快速随机的搜索能力。
2、搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,鲁棒性好。
3、搜索使用评价函数启发,过程简单。
4、使用概率机制进行迭代,具有随机性。
5、具有可扩展性,容易与其他算法结合。
缺点:
1、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,
2、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得到比较精确的解需要较多的训练时间。
3、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。
四、KNN算法(K-Nearest Neighbour)
优点:
1、简单、有效。
2、重新训练的代价较低(类别体系的变化和训练集的变化,在Web环境和电子商务应用中是很常见的)。
3、计算时间和空间线性于训练集的规模(在一些场合不算太大)。
4、由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
5、该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
缺点:
1、KNN算法是懒散学习方法(lazy learning,基本上不学习),比一些积极学习的算法要快很多。
2、类别评分不是规格化的(不像概率评分)。
3、输出的可解释性不强,例如决策树的可解释性较强。
4、该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
5、计算量较大。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。
优点:
1、可以解决小样本情况下的机器学习问题。
2、可以提高泛化性能。
3、可以解决高维问题。
4、可以解决非线性问题。
5、可以避免神经网络结构选择和局部极小点问题。
缺点:
1、对缺失数据敏感。
2、对非线性问题没有通用解决方案,必须谨慎选择Kernelfunction来处理。
六、朴素贝叶斯
优点:
1、朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。
2、NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。
缺点:
1、理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的(可以考虑用聚类算法先将相关性较大的属性聚类),这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。
2、需要知道先验概率。
3、分类决策存在错误率
七、Adaboosting方法
1、adaboost是一种有很高精度的分类器。
2、可以使用各种方法构建子分类器,Adaboost算法提供的是框架。
3、当使用简单分类器时,计算出的结果是可以理解的。而且弱分类器构造极其简单。
4、简单,不用做特征筛选。
5、不用担心overfitting。
八、Rocchio算法
优点:
容易实现,计算(训练和分类)特别简单,它通常用来实现衡量分类系统性能的基准系统,而实用的分类系统很少采用这种算法解决具体的分类问题。
九、各种分类算法综合比较
Calibrated boosted trees的性能最好,
随机森林第二,
uncalibrated bagged trees第三,
calibratedSVMs第四,
uncalibrated neural nets第五。
有些算法在特定的数据集下表现较好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10