
朴素贝叶斯模型
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。至于朴素贝叶斯模型的原理部分,这里就不讲啦,有疑惑的朋友,我推荐看李航的《统计学习方法》中的第四章。我在这里主要谈论的是基于Java版的spark贝叶斯模型。
应用场景
相对于LR,SVM这类二元分类模型,贝叶斯模型在多元分类模型中显得更有优势的。举一个场景,我们希望能通过用户搜索的关键词来判断用户的兴趣爱好。例如用户搜索的关键词是“萌宠 猫狗”,我们通过贝叶斯模型分析出用户原来对动物是感兴趣的。
实现的过程
1.确定分类类别与训练样本及其特征
假设确定有以下的类别以及部分的特征词:
健康养生:健康养生/预防疾病/健康养生专家/膳食营养/休闲养生/健康资讯/休闲与养生
军事历史:军事历史/武器/坦克/军委主席/人类精神文明/特务/突击队/八路军/四代机/
电影:电影/电影资料库/爱情片/鹰眼/刘亦菲/葛优/动作/影片推荐/惊悚/日韩电影/港台电影/
教育:教育/英语教师/华图教育/作文/公务员培训/211/挂科/雅思/地理/申论/高校广播/
旅游:旅游/旅行游记/游记/观光/爸妈游/旅行爱好者/旅行是找寻自我/国内游/
音乐:/Kugou/钢琴/音樂/网络流行/古筝/Urban/音乐人/翻唱/酷狗/虾米音乐/
摄影:摄影/时尚摄影/时装摄影/Photography/摄影师/专题摄影/摄影/相册/相机/索尼/尼康
萌宠:萌宠/萌宠物/可爱宠物/宠物用品/猫猫狗狗宠物控/猫控/食肉动物/猫咪/喵星人/宠物用品商城/
实际中的项目有25个类别,我将其置于不同的文件中,每个类别大概有500个特征词
2.获取标签特征词
List<String> vocabulary = new ArrayList<String>();
File dir = new File("/home/quincy1994/文档/微脉圈/tags/类别库");
File[] files = dir.listFiles(); //获取不同类别的标签文件
StringBuilder sb = new StringBuilder();
for(File file : files){
BufferedReader br = new BufferedReader(new FileReader(file));
String line = null;
while((line = br.readLine()) != null){
sb.append(line + "`"); //按“`"分割不同类别的标签
}
}
String[] tags = sb.toString().trim().split("`");
List<String> newTags = new ArrayList<String>();
for(String tag: tags){
if(tag.length() > 4){
newTags.add(tag); //去除空行标签
}
}
Object[] newtags = newTags.toArray();
List<Tuple2<Integer, String>> list = new ArrayList<Tuple2<Integer,String>>(); //记录每类中的标签
for(int i=0; i<newtags.length;i++){
Tuple2 <Integer, String> classWithTags = new Tuple2<Integer, String>(i, (String)newtags[i]);
System.out.println(classWithTags);
list.add(classWithTags);
String[] tokens = ((String)newtags[i]).split("/");
for(String tag: tokens){
vocabulary.add(tag);
}
}
3.获取训练样本
在获得训练样本的过程中,由于特征维度是上万维。如果为每个样本都申请上万维的向量空间,会导致jvm内存不足。为了解决这样的问题。我将训练样本转变为libsvm文件,而mllib支持libsvm文件的操作。libsvm格式文件为:【label】(空格)【index1】:【value1】(空格)【index2】:【value2】…..
其中【label】是训练数据集的目标值,对于分类,它是标识某类的整数(支持多个类);对于回归,是任意的实数。【index】是以1开始的整数,可以是不连续的;【value】为实数,也就是我们常说的自变量。检验数据文件中的label只用于计算准确度或误差,如果它是未知的,只需用一个数填写这一栏,也可以空看不填。具体的样例如下:
+1 1:0.7 2:1 3:1 4:-0.32
-1 1:0.58 2:-1 3:0.33 4:-0.6
//获取训练样本
JavaPairRDD<Integer, String> trainRDD = sc.parallelizePairs(list); //将每类的标签词转化为RDD
JavaPairRDD<Integer, String> trainSetRDD = trainRDD.mapValues(new ToTrainSet(vocabulary)); //将标签词转化为向量模型
List<Tuple2<Integer, String>> trainSet = trainSetRDD.collect();
writeTrainSet(trainSet); //写成libsvm文件格式,以方便训练
System.out.println("trainset is ok");
static class ToTrainSet implements Function<String, String>{
List<String> vocabulary = null; //标签特征库
public ToTrainSet(List<String> vocabulary){
this.vocabulary = vocabulary;
}
public String call(String sentence) throws Exception {
// TODO Auto-generated method stub
int length = vocabulary.size(); //特征维度
String[] tags = sentence.split("/");
List<Integer> tagsindex = new ArrayList<Integer>();
for(int i =0; i<tags.length; i++){
tagsindex.add(vocabulary.indexOf(tags[i]));
}
String vector = ""; //将特征向量转变为String类,节省空间
for(int i = 0 ; i < length; i++){
if(tagsindex.contains(i)){
vector += String.valueOf(1) + " ";
}
else{
vector += String.valueOf(0) + " ";
}
}
return vector.trim();
}
}
public static void writeTrainSet( List<Tuple2<Integer, String>> list) throws Exception{
File file = new File("./trainset");
PrintWriter pr = new PrintWriter(new FileWriter(file));
for(Tuple2<Integer, String> one : list){ //将每个训练样本以libsvm格式保存到trainset文件当中
String label = String.valueOf(one._1); //训练样本的类别属性
String vector = one._2(); //训练样本的向量模型
String[] indexes = vector.split(" ");
pr.print(label + " ");
String value = "";
for(int i = 0; i<indexes.length;i++){
value += (i+1) + ":" + indexes[i] + " "; // i+1是因为libsvm文件的index是从1开始
}
pr.print(value.trim());
pr.println();
}
pr.close();
}
4.读取训练集并训练模型
String path = "./trainset";
JavaRDD<LabeledPoint> trainData = MLUtils.loadLibSVMFile(sc.sc(), path).toJavaRDD();
model = NaiveBayes.train(trainData.rdd(), 1.0);
// model.save(sc.sc(), "./model");
System.out.println("model is ok");
5.预测新的测试集
String testStr = "萌宠 猫狗 ";
double[] testArray = sentenceToArrays(vocabulary, testStr);
writeTestSet(testArray);
String testPath = "./testset";
JavaRDD<LabeledPoint> testData = MLUtils.loadLibSVMFile(sc.sc(), testPath).toJavaRDD();
public static void writeTestSet(double[] testArray) throws Exception {
//和writeTrainSet一样
File file = new File("./testset");
PrintWriter pr = new PrintWriter(new FileWriter(file));
pr.print("0" + " ");
String value = "";
for(int i=0; i<testArray.length; i++){
value += (i+1) + ":" + testArray[i] + " ";
}
pr.print(value.trim());
pr.close();
}
6.多元分类预测
JavaRDD<double[]> resultData = testData.map(new GetProbabilities());
List<double[]> result = resultData.collect(); //保存的是每个测试样本所属于不同类别的概率值
for(double[] one: result){
for(int i=0;i<one.length;i++){
System.out.println("class "+ i + ":" + one[i]);
}
}
最终的结果如下:
class 0:0.032182006265154946
class 1:0.0336352243495811
class 2:0.03491449856708539
class 3:0.033205199987016924
class 4:0.034989082254391006
class 5:0.0331936923801072
class 6:0.03519542406951625
class 7:0.14276183106876328(萌宠类最高)
class 8:0.035138968378985495
class 9:0.0320506177571864
class 10:0.034970413943529836
class 11:0.033309038283581525
class 12:0.033930527800123976
class 13:0.03278336996884944
class 14:0.035473397978207644
class 15:0.034846339484132204
class 16:0.0355179245862518
class 17:0.03428401522003527
class 18:0.03556253508239065
class 19:0.03555615701038051
class 20:0.03377058314903299
class 21:0.035026463749860785
class 22:0.03428401522003527
class 23:0.03418761030403304
class 24:0.03456346204880003
class 25:0.0346676010929670
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10