京公网安备 11010802034615号
经营许可证编号:京B2-20210330
做数据分析,首先解决这两类数据质量问题
为了能够系统化地、高效地解决出现的任何问题,我们必须学会将这些问题分而治之。毕竟,知己知彼方是解决问题的首重至要。由此,我们才会发现解决之道就在其中。而对于提高数据质量同样适用:每一个解决问题的方法都有不同的阶段与角度。
当一个数据质量改进程序在启动时,仅知道数据库中有多少错误计算或重复录入是远远不够的。不止于此,我们还需要知道不同类型的错误在收集的资源中是如何分配的。
据 Jim barker 一篇很有意思的博客所述,数据质量被分解成两种不同类型。而在本文中,我会带领大家仔细区分这些“类型”有何不同,并且如何利用这些“类型”在开发预算中确保我们的优势资源放在何处。
数据类型
被誉为“数据博士”的Jim barker,借用了一个简单的医学概念来定义数据质量问题。 在他的博客中介绍了如何将这两种“类型”组合在一起,并且成功激发了那些一直纠结于找到在数据库中拉低数据质量的幺蛾子的数据分析师们的兴趣。
I型数据质量问题我们可以使用自动化工具检测到。II型数据质量问题就非常隐秘了。大家都知道它是存在的,但它看不见摸不着,更处理不了,因为它需要放在特殊情境才能被检测到。
它们之间的区别简而言之可归纳为如下几点:
型数据质量问题首先需要“知其然”才能来检测数据的完整性、一致性、唯一性和有效性。这些属性靠数据质量软件甚至手动很好地找到。你不需要有很多的背景知识,或者数据分析经验。只要按照4个属性验证它的存在,就可以判定它错误的。例如,如果我们在性别领域插入一个3,我们就可以判定它到底是不是一个有效值。
型数据质量问题需要“知其所以然”来检测时效性、一致性和准确性属性。需要研究能力、洞察力和经验,而不是简简单单就可以找得出来的。这些数据集经常从表面上看起来没有问题。但幺蛾子往往存在于细节中,需要时间去发现。Jim举的例子就是一份退休人员的雇佣记录。如果我们不知道他们早已退休的话,是看不出来这个数据是错的。
所以,解决这些数据质量问题的关键就是需要一个复杂的、战略化的方法,而非孤立的、片面的来看问题。一旦数据质量不好,我们就需要寻求自动化与人工的方式才能解决这个问题了,真可谓是“屋漏偏逢连夜雨”啊。
成本调整
所以,我们如何解决I型和II型数据质量问题呢?处理它们所花费的费用是可比的,还是完全不同的?
要记住重要的一点是,I型数据的验证问题可以在逻辑上定义,这意味着我们可以靠编写软件来查找并显示它。软件自动修复的速度快、成本低,甚至配合手动审查就可以完成。考虑到I型数据质量问题实际上是作为表格内字段型的验证,一旦解决了表格字段的问题,I型数据质量问题实际上也就解决了。
根据我们以往的经验:I型数据基本涵盖了80%的数据质量问题,但消耗了我们20%的经费成本。
第二类数据问题往往需要多方的输入,以便发现、标记和根除。虽然我们客户关系管理系统中的每个人都有购买日期,但购买日期可能不正确,或者与发票或发货清单不符。只有专家才能通过仔细核查其内容来解决问题并手动改进客户关系管理系统。
通常情况下,企业很难做到资源的合理分配,原因有二,特别是企业处于快速增长阶段;或者处于人才流失的时候。你别看这些II类问题较少,可能仅占数据问题剩余的20%,但它们很有可能需要消耗超过80%的成本预算。所以,如果当企业处于人才大量流失,却又对此无能为力的时候。你会发现第二类数据问题更难处理,因为人工解决的途径已不复存在了。
提高精确程度
为了提高数据的准确性,我们必须将I型和II型数据问题作为单独的,但同时存在的问题进行研究。I类型数据质量的挑战可以呈现快速获胜,但第II类问题提出了一个挑战,必须依靠人类的专业知识才可以解决。
随着时间的推移,数据库会超过使用期限。为保其时效性,这需要持续不断的努力。数据可以在数据库中进行清洗,或在使用阶段进行清理,但由于如导入/导出、损坏、手动编辑、人为导致错误等多种原因,仍然要注意I型错误的发生。第II类数据问题在这阶段自然而然地发生,因为就算数据经过验证和审查之后看起来正确,但对于现在来说仍有可能是不正确的,因为此时已非彼时,数据的使用环境改变了。
确保数据的完整
数据的完整会有助于我们观察整个事物的全貌并推动其对事物的决策。正如我们前面所说,发现I型数据质量问题是比较简单、廉价和快速的。但如果企业的工作业务还没有采用某种数据质量软件来解决I型数据质量问题的话,那现在也应该着手考虑了,因为这样才可能避免将来出现的资源浪费、损害品牌效应和来自大众的误解。
而对于第II类数据问题,关键是要理解它为什么会发生,并采取措施以防止它的发生。从日常工作中,处事的变通以及员工疏忽常导致数据的质量不佳。随着时间的推移,资源分配失当也会增加II型数据问题的增加。而改善它的费用也会成倍增加,因为你需要具备专家的眼光方能在茫茫的数据中找到它的存在。
其实,发现并解决这两类问题在当下已不是不可能的事了。会变得越来越容易。很多数据质量供应商们也在不断寻找新的方法,相信在不远的将来,得到高质量的数据会变得越来轻松,越来越简单。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01