
做数据分析,首先解决这两类数据质量问题
为了能够系统化地、高效地解决出现的任何问题,我们必须学会将这些问题分而治之。毕竟,知己知彼方是解决问题的首重至要。由此,我们才会发现解决之道就在其中。而对于提高数据质量同样适用:每一个解决问题的方法都有不同的阶段与角度。
当一个数据质量改进程序在启动时,仅知道数据库中有多少错误计算或重复录入是远远不够的。不止于此,我们还需要知道不同类型的错误在收集的资源中是如何分配的。
据 Jim barker 一篇很有意思的博客所述,数据质量被分解成两种不同类型。而在本文中,我会带领大家仔细区分这些“类型”有何不同,并且如何利用这些“类型”在开发预算中确保我们的优势资源放在何处。
数据类型
被誉为“数据博士”的Jim barker,借用了一个简单的医学概念来定义数据质量问题。 在他的博客中介绍了如何将这两种“类型”组合在一起,并且成功激发了那些一直纠结于找到在数据库中拉低数据质量的幺蛾子的数据分析师们的兴趣。
I型数据质量问题我们可以使用自动化工具检测到。II型数据质量问题就非常隐秘了。大家都知道它是存在的,但它看不见摸不着,更处理不了,因为它需要放在特殊情境才能被检测到。
它们之间的区别简而言之可归纳为如下几点:
型数据质量问题首先需要“知其然”才能来检测数据的完整性、一致性、唯一性和有效性。这些属性靠数据质量软件甚至手动很好地找到。你不需要有很多的背景知识,或者数据分析经验。只要按照4个属性验证它的存在,就可以判定它错误的。例如,如果我们在性别领域插入一个3,我们就可以判定它到底是不是一个有效值。
型数据质量问题需要“知其所以然”来检测时效性、一致性和准确性属性。需要研究能力、洞察力和经验,而不是简简单单就可以找得出来的。这些数据集经常从表面上看起来没有问题。但幺蛾子往往存在于细节中,需要时间去发现。Jim举的例子就是一份退休人员的雇佣记录。如果我们不知道他们早已退休的话,是看不出来这个数据是错的。
所以,解决这些数据质量问题的关键就是需要一个复杂的、战略化的方法,而非孤立的、片面的来看问题。一旦数据质量不好,我们就需要寻求自动化与人工的方式才能解决这个问题了,真可谓是“屋漏偏逢连夜雨”啊。
成本调整
所以,我们如何解决I型和II型数据质量问题呢?处理它们所花费的费用是可比的,还是完全不同的?
要记住重要的一点是,I型数据的验证问题可以在逻辑上定义,这意味着我们可以靠编写软件来查找并显示它。软件自动修复的速度快、成本低,甚至配合手动审查就可以完成。考虑到I型数据质量问题实际上是作为表格内字段型的验证,一旦解决了表格字段的问题,I型数据质量问题实际上也就解决了。
根据我们以往的经验:I型数据基本涵盖了80%的数据质量问题,但消耗了我们20%的经费成本。
第二类数据问题往往需要多方的输入,以便发现、标记和根除。虽然我们客户关系管理系统中的每个人都有购买日期,但购买日期可能不正确,或者与发票或发货清单不符。只有专家才能通过仔细核查其内容来解决问题并手动改进客户关系管理系统。
通常情况下,企业很难做到资源的合理分配,原因有二,特别是企业处于快速增长阶段;或者处于人才流失的时候。你别看这些II类问题较少,可能仅占数据问题剩余的20%,但它们很有可能需要消耗超过80%的成本预算。所以,如果当企业处于人才大量流失,却又对此无能为力的时候。你会发现第二类数据问题更难处理,因为人工解决的途径已不复存在了。
提高精确程度
为了提高数据的准确性,我们必须将I型和II型数据问题作为单独的,但同时存在的问题进行研究。I类型数据质量的挑战可以呈现快速获胜,但第II类问题提出了一个挑战,必须依靠人类的专业知识才可以解决。
随着时间的推移,数据库会超过使用期限。为保其时效性,这需要持续不断的努力。数据可以在数据库中进行清洗,或在使用阶段进行清理,但由于如导入/导出、损坏、手动编辑、人为导致错误等多种原因,仍然要注意I型错误的发生。第II类数据问题在这阶段自然而然地发生,因为就算数据经过验证和审查之后看起来正确,但对于现在来说仍有可能是不正确的,因为此时已非彼时,数据的使用环境改变了。
确保数据的完整
数据的完整会有助于我们观察整个事物的全貌并推动其对事物的决策。正如我们前面所说,发现I型数据质量问题是比较简单、廉价和快速的。但如果企业的工作业务还没有采用某种数据质量软件来解决I型数据质量问题的话,那现在也应该着手考虑了,因为这样才可能避免将来出现的资源浪费、损害品牌效应和来自大众的误解。
而对于第II类数据问题,关键是要理解它为什么会发生,并采取措施以防止它的发生。从日常工作中,处事的变通以及员工疏忽常导致数据的质量不佳。随着时间的推移,资源分配失当也会增加II型数据问题的增加。而改善它的费用也会成倍增加,因为你需要具备专家的眼光方能在茫茫的数据中找到它的存在。
其实,发现并解决这两类问题在当下已不是不可能的事了。会变得越来越容易。很多数据质量供应商们也在不断寻找新的方法,相信在不远的将来,得到高质量的数据会变得越来轻松,越来越简单。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15