京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中多线程thread与threading的实现方法
学过Python的人应该都知道,Python是支持多线程的,并且是native的线程。本文主要是通过thread和threading这两个模块来实现多线程的。
python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用。
这里需要提一下的是python对线程的支持还不够完善,不能利用多CPU,但是下个版本的python中已经考虑改进这点,让我们拭目以待吧。
threading模块里面主要是对一些线程的操作对象化了,创建了叫Thread的class。
一般来说,使用线程有两种模式,一种是创建线程要执行的函数,把这个函数传递进Thread对象里,让它来执行;另一种是直接从Thread继承,创建一个新的class,把线程执行的代码放到这个新的 class里。
我们来看看这两种做法吧。
一、Python thread实现多线程
#-*- encoding: gb2312 -*-
import string, threading, time
def thread_main(a):
global count, mutex
# 获得线程名
threadname = threading.currentThread().getName()
for x in xrange(0, int(a)):
# 取得锁
mutex.acquire()
count = count + 1
# 释放锁
mutex.release()
print threadname, x, count
time.sleep(1)
def main(num):
global count, mutex
threads = []
count = 1
# 创建一个锁
mutex = threading.Lock()
# 先创建线程对象
for x in xrange(0, num):
threads.append(threading.Thread(target=thread_main, args=(10,)))
# 启动所有线程
for t in threads:
t.start()
# 主线程中等待所有子线程退出
for t in threads:
t.join()
if __name__ == '__main__':
num = 4
# 创建4个线程
main(4)
二、Python threading实现多线程
#-*- encoding: gb2312 -*-
import threading
import time
class Test(threading.Thread):
def __init__(self, num):
threading.Thread.__init__(self)
self._run_num = num
def run(self):
global count, mutex
threadname = threading.currentThread().getName()
for x in xrange(0, int(self._run_num)):
mutex.acquire()
count = count + 1
mutex.release()
print threadname, x, count
time.sleep(1)
if __name__ == '__main__':
global count, mutex
threads = []
num = 4
count = 1
# 创建锁
mutex = threading.Lock()
# 创建线程对象
for x in xrange(0, num):
threads.append(Test(10))
# 启动线程
for t in threads:
t.start()
# 等待子线程结束
for t in threads:
t.join()
相信本文所述Python多线程实例对大家的Python程序设计能够起到一定的借鉴价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13