【每周一期-数据蒋堂】还原分组运算的本意
【每周一期-数据蒋堂】还原分组运算的本意
分组是SQL中常见的运算,但未必所有人都能深刻地理解它。
分组运算的实质是将一个集合按照某种规则拆分成若干个子集,也就是说,返回值应当是一个由集合构成的集合,但人们一般并不太关心构成这个集合的成员集合(我们称为分组子集),而是对这些子集的聚合值更感兴趣,因此,分组运算常常伴随着对子集的进一步汇总计算。
SQL就是这么做的,在写有GROUP BY子句时,SELECT部分除了分组字段外,就只能写入聚合运算表达式了。当然还有个原因是SQL没有显式的集合数据类型,无法返回集合的集合这类数据,也只能强迫实施聚合运算了。
久而久之,人们会认为分组总是需要配合后续的聚合运算,而忘记了分组和聚合其实是两个独立的步骤。
但是,我们仍然有对这些分组子集而不是聚合值更感兴趣的时候。
比如,我们想找出公司里有哪些员工和其他员工会在同一天过生日,很简单的思路是将员工按生日分组,然后找出成员数大于1的分组子集,再合并起来。这时候我们就不是只对聚合值(分组子集的成员数)感兴趣,而是对分组子集本身更感兴趣。
这个运算用SQL写起来就会比较啰嗦,需要用子查询,并且要遍历两次原集合。
SELECT * FROM employee WHERE birthday IN
( SELECT birthday FROM employee GROUP BY birthday HAVING COUNT(*)>1 )
(题外话:这里假定birthday字段就是生日,其实我们日常意义的生日是没有年份的,而数据表中的birthday字段则会有,这时候还需要把birthday转换成月和日再做GROUP和WHERE,但对于集合化不彻底的SQL,涉及两个成员的IN运算很难写,上面的birthday要改写类似month(birthday()*100+day(birthday)的样子,拼成一个单独的表达式才能使用IN来判断,书写要繁琐很多。)
有集合化更彻底的语法时,就可以保持住分组子集。这就是需要离散性来支持了,分组子集仍然是原集合成员构成。这样,分组和聚合还原成两个步骤,上面的运算就可以很清晰地写出来:
employee.group(month(birthday),day(birthday)).select(~.len()>1).conj()
(在这个表达式中我们使用了前面讲遍历语法时的~符号表示当前成员,也就是遍历过程中的某个分组子集。)
按birthday的月/日分组,过滤出成员数大于1的分组子集,然后求并集。事实上在做过滤时仍然要再二次遍历数据,但只是计数,不需要象SQL那样做比较,性能要好很多。
退一步讲,就算我们只对聚合值感兴趣,我们也可能需要保持住这些分组子集以便反复利用,计算出多种聚合值,而不是完成一次聚合后就将其丢弃,下次再计算时又要重新分组。分组是个成本不低的运算,现在一般使用HASH方法实现分组,计算和比较HASH值都要比简单遍历复杂很多。有些优化不好的计算方案还会使用排序的方法实现分组(很多报表工具是这么做的),性能更会差出一个级别来。
比如我们计算每个部门的人数,再计算出10人以上部门的人员平均年龄。这在SQL中就要写成两句,因为后者需要一个HAVING条件:
SELECT department, COUNT(*) FROM employee GROUP BY department
SELECT department,AVERAGE(age) FROM employee GROUP BY department HAVING COUNT(*)>=10
这里GROUP动作就要被执行两遍。
而如果能够保持分组子集,则只要做一次group就可以了:
g=employee.group(department)
g.new(~.department,~.len())
g.select(~.len()>=10).new(~.department,~.avg(age))
还有的可能是,我们确实只对一个聚合值感兴趣,但这个聚合值很难计算,并不能简单地用SUM/COUNT计算出来的,需要编段程序才行,这时候也需要保留分组子集,而用SQL就很难实现这种运算了。我们会在后续文章中举例。
分组的结果是集合的集合,它仍然是个集合,那显然还可以进一步分组。
g1=employee.group(year(birthday)) //按出生年份分组
g2=g1.group(year(birthday)%100\10) //将所有分组子集按年代分组
g3=g1.(~.group(month(birthday)) //将每个分组子集按出生月份分组
后两步运算都会得到集合的集合的集合,三层或更深的情况在现实业务中很少碰到,但可以用来体会集合的思维方式以及分组运算的本质。
我们知道,SQL针对GROUP后的结果集过滤专门设计了HAVING关键字,许多初学者对HAVING的理解和运用都不到位。其实,HAVING从概念上讲是多余的,它和WHERE并没有任何差别,只是因为SQL无法保持分组子集,要把分组和聚合写在一句话中,又要和WHERE区分,然后硬造出来的一个关键字。如果能够保持分组子集后实现分步计算,HAVING是没有必要的。
蒋步星,清华大学计算机硕士,著有《非线性报表模型原理》等
1989年中国国际奥林匹克数学竞赛团体冠军成员,个人金牌。
2000年创立润乾公司,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准。
2008年开始研发不依赖关系型数据的计算引擎,历经多个版本后,于2014年集算器正式发布。有效地提高了复杂结构化大数据计算的开发速度和运算效率。
2016年荣获中国电子信息产业发展研究院评选的“2016年中国软件和信息服务业 • 十大领军人物”。
2017年将带领润乾软件朝着拥有自主产权的非关系型强计算数据仓库、云数据库等产品迈进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27