京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用正在颠覆传统保险精算模型
“互联网时代是一个革命和被革命的时代,互联网在为保险业带来新机遇的同时,也将影响保险业。”泰康人寿副总裁王道南近日称,大数据与保险碰撞出美妙火花的同时,也让传统精算模型面临挑战。这种观点为更多人认同。比如平安直通产险副总经理孙炜认为,大数据可能从根本上改变精算。
一个原本不存在的市场
“大数据已全面渗透保险,从平台化的数据采集,到场景化的数据挖掘,到服务化的数据更新,再到个性化的数据应用。”在9月28日至29日举行,由中国精算师协会主办、泰康人寿协办的第15届中国精算年会上,泰康人寿副总裁王道南称,大数据与保险碰撞出美妙的火花。
他认为,互联网为保险业带来新的机遇,创造出一个原来不存在的市场,颠覆了保险客户数的数量级。这一机遇的最好例子要算运费险,这一保险产品每单0.5元到1元,每日约200万单,成交量创造过单日超1.5亿笔的纪录。
华泰财险电子商务部总经理施辉认为,互联网为保险业提供了细分和专业化最好的时机。以互联网环境为背景,形成互联网生态,在新生态环境下滋生新的风险,并对各种未知的风险定量化,产生新的保险产品,为保险行业发展提供创新土壤。
“大数据是互联网产品定价的终极武器,免费将颠覆高度标准化、低价值的市场。”王道南称,互联网将颠覆传统保险的定价方式。同时,件均将大幅下降,客户量将急剧上升;而通过大数据、自动化,保险公司的经营风险和提供服务的成本将大幅降低。公司和客户之间的交互方式将发生革命:保险公司与客户之间发生更为频繁的交互。
“过去保险公司跟客户的交互就一年一次,但是现在跟客户的交互更多。通过跟第三方合作,保险公司可以通过分析运动、社交甚至交易等在内的大数据,对客户更加了解,所以亲民、普惠、高效在回归到保险服务上,这是大数据对行业的一个影响。”王道南称。
而在充分了解客户风险状况后,保险公司可以更有能力做产品形态(比如免赔额、最高保额、等待期)、产品价格(差别定价、无理赔优待)、两核条件(免核保、免核赔)的差别制定。
x变量更丰富
而正在全面渗透保险的大数据,让传统精算模型面临挑战。
小微金融服务集团(筹)首席战略官兼副总裁舒明预测了大数据下的运费险定价演进过程:从一口价时代(保费按5%费率统一收取)到精算定价时代(以历史出现率为唯一定价因子),到数据定价时代(以30+因子统计建模,预测退货率),再到大数据定价时代(百万ID特征,实时特征)。
“过去保险业所依赖的疾病发生率、生命表、住院发生率等历史数据,甚至包括性别、年龄、职业等在内的信息,应该讲,维度还是相对单一的。”王道南称,未来的大数据,将包括地区、信用、收入、浏览记录、生活作息、运动频率、兴趣爱好、上网时长、风险偏好等更多维、更全面的信息,所以,如何满足客户差异化、个性化的需求,传统的机遇经验数据的核保定价模型如何与时俱进,都值得探讨。
这一观点为更多人认同。比如平安直通产险副总经理孙炜就认为,大数据可能从根本上改变精算。他给出了三个理由。
“以前的精算解决的是找到y=f(x)里的f的问题,去拟合、解决预测未来的问题,而未来的大数据,要去解决x,随机变量更丰富,类型各不相同,也是行业目前有所缺失的。”
另外,孙炜认为,大数据下的精算方法和工具会有变化。从此前的概率事件、因果解决预测,到未来可能变成从相关性找到预测的情况;第二是从间接变量到直接变量,现在是从过往的历史赔付次数和金额等,未来要找到直接的风险变量,去对这些变量进行精算评估;再有就是从损失分布的理论与实证检验,大数据本身的处理方法等。
同时,未来,数据应该视为保险公司的核心资产。“未来可能出现,数据的应用情况和质量也应该成为公司的核心资产,看一个公司价值的时候,金融分析师也可能成为一个衡量维度。”
舒明则预测,保险流程的创新会基于大数据的精算模型,实现精准化、个性化定价,并实现快速理赔。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17