
今天,我们继续开启分类算法之旅,它是一种高效简介的分类算法,后面有一个集成算法正是基于它之上,它是一个可视化效果很好的算法,这个算法就是决策树。
1 一个例子
有一堆水果,其中有香蕉,苹果,杏这三类,现在要对它们分类,可以选择的特征有两个:形状和大小,其中形状的取值有个:圆形和不规则形,大小的取值有:相对大和相对小。现在要对其做分类,我们可以这样做:
首先根据特征:形状,如果不是圆形,那么一定是香蕉,这个就是叶子节点;
如果是圆形,
再进一步根据大小这个特征判断,如果是相对大的,则是苹果,如果否,则是杏子,至此我们又得到两个叶子节点,并且到此分类位置,都得到了正确划分三种水果的方法。
大家可以体会刚才这个过程,这就是一个决策分类,构建树的一个过程,说成是树,显得有点高大上,再仔细想想就是一些列 if 和 else 的嵌套,说是树只不过是逻辑上的一种神似罢了。
刚才举的这个例子,有两个特征:形状和大小,并且选择了第一个特征:形状作为第一个分裂点,大小作为第二个分裂点,那么不能选择第二个特征作为第一分裂点吗? 这样选择有没有公式依据呢?
2 分裂点选择依据
在上个例子中,有三类水果,现在假设杏都被我们家的宝宝吃完了,现在手里只有香蕉和苹果这两类水果了,并且这个时候要对它们做分类,此时机灵的你,一定会根据特征:形状对它们分类了,因为这样一下就会把它们分开了,此时我们说这类集合的纯度更高,与之前的那三类水果在形状这个特征上。
纯度这个概念是很好的理解的,种类越少纯度越高,自然两类纯度更高。 此时有人提出了一个和它相反的但是不那么容易理解的概念:熵。它们是敌对双方:熵越大,纯度越低;熵越小,纯度越高。
这是一种概念,那么如何用公式量化熵呢:
其中 i 等于苹果,香蕉,杏,P(i)是集合中取得某一个水果的概率。
试想一下,如果我们想更好地对某个集合完成分类,会怎么做呢?我们一定会优先选择一个特征,使得以这个特征做分类时,它们能最大程度的降低熵,提高分类的纯度,极限的情况是集合中100个元素(集合中只有两类水果),根据某个最优特征,直接将分为两类,一类都是苹果,一类都是杏,这样熵直接等于0。
这个特点就是所谓的信息增益,熵降低的越多,信息增益的就越多。很多时候都不会发生上述说的这个极限情况,就像文章一开始举的例子,根据形状划分后,熵变小了,但是未等于0,比如刚开始三类水果的熵等于0.69,现在根据形状分裂后,熵等于了0.4,所以信息增益为0.69 – 0.4 = 0.29 。如果根据大小划分,信息增益为0.1,那么我们回考虑第一个分裂特征:形状。
这种方法有问题吗?
3 信息增益越大,分类效果越好?
这是只根据信息增益选择分裂特征点的bug,请看下面举例。
如果某个特征是水果的唯一标示属性:编号,那么此时如果选择这个特征,共得到100个叶子节点(假设这堆水果一共有100个),每个叶子节点只含有1个样本,并且此时的信息增益最大为 0.69 – 0 = 0.69 。
但是,这是好的分类吗? 每一个样本作为单独的叶子节点,当来了101号水果,都不知道划分到哪一个叶子节点,也就不知道它属于哪一类了!
因此,这个问题感觉需要除以某个变量,来消除这种情况的存在。
它就是信息增益率,它不光考虑选择了某个分裂点后能获得的信息增益,同时还要除以分裂出来的这些节点的熵值,什么意思呢? 刚才不是分裂出来100个节点吗,那么这些节点自身熵一共等于多少呢:
再除以上面这个数后,往往信息增益率就不会那么大了。这就是传说中的从ID3 到 C4.5 的改进。
4 与熵的概念类似的基尼系数
只需要知道基尼系数和熵差不多的概念就行了,只不过量化的公式不同而已,这就说明理解了,至于公式长什么样子,用的时候去查就行了。
让我们看一下远边的大海,和海边优美的风景,放松一下吧!
5 展望
以上介绍了决策树的一些概念和分裂点选取的基本方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22