
今天,我们继续开启分类算法之旅,它是一种高效简介的分类算法,后面有一个集成算法正是基于它之上,它是一个可视化效果很好的算法,这个算法就是决策树。
1 一个例子
有一堆水果,其中有香蕉,苹果,杏这三类,现在要对它们分类,可以选择的特征有两个:形状和大小,其中形状的取值有个:圆形和不规则形,大小的取值有:相对大和相对小。现在要对其做分类,我们可以这样做:
首先根据特征:形状,如果不是圆形,那么一定是香蕉,这个就是叶子节点;
如果是圆形,
再进一步根据大小这个特征判断,如果是相对大的,则是苹果,如果否,则是杏子,至此我们又得到两个叶子节点,并且到此分类位置,都得到了正确划分三种水果的方法。
大家可以体会刚才这个过程,这就是一个决策分类,构建树的一个过程,说成是树,显得有点高大上,再仔细想想就是一些列 if 和 else 的嵌套,说是树只不过是逻辑上的一种神似罢了。
刚才举的这个例子,有两个特征:形状和大小,并且选择了第一个特征:形状作为第一个分裂点,大小作为第二个分裂点,那么不能选择第二个特征作为第一分裂点吗? 这样选择有没有公式依据呢?
2 分裂点选择依据
在上个例子中,有三类水果,现在假设杏都被我们家的宝宝吃完了,现在手里只有香蕉和苹果这两类水果了,并且这个时候要对它们做分类,此时机灵的你,一定会根据特征:形状对它们分类了,因为这样一下就会把它们分开了,此时我们说这类集合的纯度更高,与之前的那三类水果在形状这个特征上。
纯度这个概念是很好的理解的,种类越少纯度越高,自然两类纯度更高。 此时有人提出了一个和它相反的但是不那么容易理解的概念:熵。它们是敌对双方:熵越大,纯度越低;熵越小,纯度越高。
这是一种概念,那么如何用公式量化熵呢:
其中 i 等于苹果,香蕉,杏,P(i)是集合中取得某一个水果的概率。
试想一下,如果我们想更好地对某个集合完成分类,会怎么做呢?我们一定会优先选择一个特征,使得以这个特征做分类时,它们能最大程度的降低熵,提高分类的纯度,极限的情况是集合中100个元素(集合中只有两类水果),根据某个最优特征,直接将分为两类,一类都是苹果,一类都是杏,这样熵直接等于0。
这个特点就是所谓的信息增益,熵降低的越多,信息增益的就越多。很多时候都不会发生上述说的这个极限情况,就像文章一开始举的例子,根据形状划分后,熵变小了,但是未等于0,比如刚开始三类水果的熵等于0.69,现在根据形状分裂后,熵等于了0.4,所以信息增益为0.69 – 0.4 = 0.29 。如果根据大小划分,信息增益为0.1,那么我们回考虑第一个分裂特征:形状。
这种方法有问题吗?
3 信息增益越大,分类效果越好?
这是只根据信息增益选择分裂特征点的bug,请看下面举例。
如果某个特征是水果的唯一标示属性:编号,那么此时如果选择这个特征,共得到100个叶子节点(假设这堆水果一共有100个),每个叶子节点只含有1个样本,并且此时的信息增益最大为 0.69 – 0 = 0.69 。
但是,这是好的分类吗? 每一个样本作为单独的叶子节点,当来了101号水果,都不知道划分到哪一个叶子节点,也就不知道它属于哪一类了!
因此,这个问题感觉需要除以某个变量,来消除这种情况的存在。
它就是信息增益率,它不光考虑选择了某个分裂点后能获得的信息增益,同时还要除以分裂出来的这些节点的熵值,什么意思呢? 刚才不是分裂出来100个节点吗,那么这些节点自身熵一共等于多少呢:
再除以上面这个数后,往往信息增益率就不会那么大了。这就是传说中的从ID3 到 C4.5 的改进。
4 与熵的概念类似的基尼系数
只需要知道基尼系数和熵差不多的概念就行了,只不过量化的公式不同而已,这就说明理解了,至于公式长什么样子,用的时候去查就行了。
让我们看一下远边的大海,和海边优美的风景,放松一下吧!
5 展望
以上介绍了决策树的一些概念和分裂点选取的基本方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11