
1、字段抽取
字段截取函数:substr(x,start,stop)
[python] view plain copy
tel <- '18922254812';
#运营商
band <- substr(tel, 1, 3)
#地区
area <- substr(tel, 4, 7)
#号码段
num <- substr(tel, 8, 11)
tels <- read.csv('1.csv');
#运营商
bands <- substr(tels[,1], 1, 3)
#地区
areas <- substr(tels[,1], 4, 7)
#号码段
nums <- substr(tels[,1], 8, 11)
new_tels <- data.frame(tels, bands, areas, nums)
2、字段合并
字段合并,是指将同一个数据框中的不同列,进行合并,形成新的列
字符分割函数:paste(x1,x2,...,sep=" ")
[python] view plain copy
data <- read.table('1.csv', sep=' ')
p_data <- paste(data[,1], data[,2], data[,3], sep="")
newData <- data.frame(data, p_data)
3、记录合并
将两个结构相同的数据框,合并成一个数据框
记录合并函数:rbind(dataFrame1,dataFrame2,...)
[python] view plain copy
data_1_1 <- read.table('1.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data_1_2 <- read.table('2.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data_1_3 <- read.table('3.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data <- rbind(data_1_1, data_1_2, data_1_3)
fix(data)
4、字段匹配
将不同结构的数据框,按照一定的条件进行合并(两表合并)
字段匹配函数:merge(x,y,by.x,by.y)
[python] view plain copy
items <- read.table('1.csv', sep='|', header=FALSE, fileEncoding='utf-8')
fix(items)
prices <- read.table('2.csv', sep='|', header=FALSE, fileEncoding='utf-8')
fix(prices)
itemPrices <- merge(prices, items, by.x=c('V1'), by.y=c('V1'))
fix(itemPrices)
Join( )也可以用来实现两表连接:
[python] view plain copy
inner_join(t1,t2,by=c("列名1","列名2"))
#功能等于:
merge(t1,t2,by.x="列名",by.y="列名")
#还有其他的join方式:
full_join 全连接
left_join 左连接
right_join 右连接
5、字符串处理高级技巧
[python] view plain copy
x <- c("Hellow", "World", "!")
#一、字符串长度
nchar(x)
#[1] 6 5 1
length(x)
#[1] 3
#二、字符串替换
chartr("HW", "ZX", x)
#[1] "Zellow" "Xorld" "!"
#三、字符串的大小写转换
tolower(x)
#[1] "hellow" "world" "!"
toupper(x)
#[1] "HELLOW" "WORLD" "!"
#四、字符串的拼接
paste("CK", 1:6, sep="")
#[1] "CK1" "CK2" "CK3" "CK4" "CK5" "CK6"
x <- list(a="aaa", b="bbb", c="ccc")
y <- list(d=1, e=2)
paste(x, y, sep="-")
#较短的向量被循环使用
#[1] "aaa-1" "bbb-2" "ccc-1"
#五、字符串切割
text <- "Hello word!"
strsplit(text, ' ')
#[[1]]
#[1] "Hello" "word!"
class(strsplit(text, ' '))
#[1] "list"
#有一种情况很特殊:
#如果split参数的字符长度为0,得到的结果就是一个个的字符:
strsplit(text, '')
#[[1]]
# [1] "H" "e" "l" "l" "o" " " "w" "o" "r" "d" "!"
#一个首字符大写的综合案例
capStringAll <- function(x)
{
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1, 1)), substring(s, 2),
sep = "", collapse = " ")
}
capStringAll("hello word")
#[1] "Hello Word"
capString <- function(x)
{
s <- strsplit(x, " ")[[1]]
s[1] <- paste(toupper(substring(s[1], 1, 1)), substring(s[1], 2), sep = "", collapse = " ");
paste(s, sep = "", collapse = " ")
}
capString("hello word")
#[1] "Hello word"
#六、字符串的查找
#grep, grepl: 返回pattern的匹配项。
#前者返回匹配项目的下标;后者返回逻辑值,x长度有多少,就返回多少个逻辑值。
#如果添加一个value参数,赋值为T,则返回匹配项的值。
text <- c("Company", "Coworker", "Cooperation", "Can")
grep("o", text)
#[1] 1 2 3
grepl("o", text)
#[1] TRUE TRUE TRUE FALSE
grep("o", text, value = T)
#[1] "Company" "Coworker" "Cooperation"
#七、字符串的替换
#sub, gsub: 返回用replacement替换匹配项之后的x(字符型向量)。
#前者只替换向量中每个元素的第一个匹配值,后者替换所有匹配值。
#注意以下两个例子中"o"的替换方式。
sub("o", "xx", text)
#[1] "Cxxmpany" "Cxxworker" "Cxxoperation" "Can"
gsub("o", "xx", text)
#[1] "Cxxmpany" "Cxxwxxrker" "Cxxxxperatixxn" "Can"
#八、字符串的截取
x <- "123456789"
substr(x, 2, 4)
#[1] "234"
substring(x, c(2,4), c(4,5,8))
#[1] "234" "45" "2345678"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13