
1、字段抽取
字段截取函数:substr(x,start,stop)
[python] view plain copy
tel <- '18922254812';
#运营商
band <- substr(tel, 1, 3)
#地区
area <- substr(tel, 4, 7)
#号码段
num <- substr(tel, 8, 11)
tels <- read.csv('1.csv');
#运营商
bands <- substr(tels[,1], 1, 3)
#地区
areas <- substr(tels[,1], 4, 7)
#号码段
nums <- substr(tels[,1], 8, 11)
new_tels <- data.frame(tels, bands, areas, nums)
2、字段合并
字段合并,是指将同一个数据框中的不同列,进行合并,形成新的列
字符分割函数:paste(x1,x2,...,sep=" ")
[python] view plain copy
data <- read.table('1.csv', sep=' ')
p_data <- paste(data[,1], data[,2], data[,3], sep="")
newData <- data.frame(data, p_data)
3、记录合并
将两个结构相同的数据框,合并成一个数据框
记录合并函数:rbind(dataFrame1,dataFrame2,...)
[python] view plain copy
data_1_1 <- read.table('1.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data_1_2 <- read.table('2.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data_1_3 <- read.table('3.csv', sep='|', header=TRUE, fileEncoding='utf-8');
data <- rbind(data_1_1, data_1_2, data_1_3)
fix(data)
4、字段匹配
将不同结构的数据框,按照一定的条件进行合并(两表合并)
字段匹配函数:merge(x,y,by.x,by.y)
[python] view plain copy
items <- read.table('1.csv', sep='|', header=FALSE, fileEncoding='utf-8')
fix(items)
prices <- read.table('2.csv', sep='|', header=FALSE, fileEncoding='utf-8')
fix(prices)
itemPrices <- merge(prices, items, by.x=c('V1'), by.y=c('V1'))
fix(itemPrices)
Join( )也可以用来实现两表连接:
[python] view plain copy
inner_join(t1,t2,by=c("列名1","列名2"))
#功能等于:
merge(t1,t2,by.x="列名",by.y="列名")
#还有其他的join方式:
full_join 全连接
left_join 左连接
right_join 右连接
5、字符串处理高级技巧
[python] view plain copy
x <- c("Hellow", "World", "!")
#一、字符串长度
nchar(x)
#[1] 6 5 1
length(x)
#[1] 3
#二、字符串替换
chartr("HW", "ZX", x)
#[1] "Zellow" "Xorld" "!"
#三、字符串的大小写转换
tolower(x)
#[1] "hellow" "world" "!"
toupper(x)
#[1] "HELLOW" "WORLD" "!"
#四、字符串的拼接
paste("CK", 1:6, sep="")
#[1] "CK1" "CK2" "CK3" "CK4" "CK5" "CK6"
x <- list(a="aaa", b="bbb", c="ccc")
y <- list(d=1, e=2)
paste(x, y, sep="-")
#较短的向量被循环使用
#[1] "aaa-1" "bbb-2" "ccc-1"
#五、字符串切割
text <- "Hello word!"
strsplit(text, ' ')
#[[1]]
#[1] "Hello" "word!"
class(strsplit(text, ' '))
#[1] "list"
#有一种情况很特殊:
#如果split参数的字符长度为0,得到的结果就是一个个的字符:
strsplit(text, '')
#[[1]]
# [1] "H" "e" "l" "l" "o" " " "w" "o" "r" "d" "!"
#一个首字符大写的综合案例
capStringAll <- function(x)
{
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1, 1)), substring(s, 2),
sep = "", collapse = " ")
}
capStringAll("hello word")
#[1] "Hello Word"
capString <- function(x)
{
s <- strsplit(x, " ")[[1]]
s[1] <- paste(toupper(substring(s[1], 1, 1)), substring(s[1], 2), sep = "", collapse = " ");
paste(s, sep = "", collapse = " ")
}
capString("hello word")
#[1] "Hello word"
#六、字符串的查找
#grep, grepl: 返回pattern的匹配项。
#前者返回匹配项目的下标;后者返回逻辑值,x长度有多少,就返回多少个逻辑值。
#如果添加一个value参数,赋值为T,则返回匹配项的值。
text <- c("Company", "Coworker", "Cooperation", "Can")
grep("o", text)
#[1] 1 2 3
grepl("o", text)
#[1] TRUE TRUE TRUE FALSE
grep("o", text, value = T)
#[1] "Company" "Coworker" "Cooperation"
#七、字符串的替换
#sub, gsub: 返回用replacement替换匹配项之后的x(字符型向量)。
#前者只替换向量中每个元素的第一个匹配值,后者替换所有匹配值。
#注意以下两个例子中"o"的替换方式。
sub("o", "xx", text)
#[1] "Cxxmpany" "Cxxworker" "Cxxoperation" "Can"
gsub("o", "xx", text)
#[1] "Cxxmpany" "Cxxwxxrker" "Cxxxxperatixxn" "Can"
#八、字符串的截取
x <- "123456789"
substr(x, 2, 4)
#[1] "234"
substring(x, c(2,4), c(4,5,8))
#[1] "234" "45" "2345678"
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27