
大数据正在影响保险精算领域_数据分析师
伴随着中国保险市场的壮大,精算师的行业地位也不断上升。2014年秋季中国精算师资格考试将于10月18日至24日举行,今年报名人数依旧火爆。
除了中国精算师资格,近年来,北美精算师也成为备受国内保险公司精算部门推崇的一项资格认证。北美精算师协会会员中,已有约12%来自中国。
北美精算师协会(SOA)前任会长、美国财政部的精算师汤娅·曼宁日前在接受证券时报记者专访时对中国保险市场予以积极展望。她认为,北美精算师协会将国外的精算思维和行业经验带到中国,并积极本土化,对中国精算行业有着积极意义。
风险模型决定盈利
证券时报记者:作为资深精算界人士,在您看来,精算对保险业的重要性体现在哪里?精算在保险产品定价中起到什么样的作用?它又是如何影响保险公司盈利的?
汤娅·曼宁:精算学在保险中的作用至关重要,尤其在风险控制、风险定价以及配合不断扩展的监管需求方面起到了不可替代的作用。精算师们都接受过很好的培训,非常适合参与产品定价,他们专精于风险管控以及财务预测,而这也同样是中国保险市场发展过程中非常重要的因素之一。
一个保险公司的盈利水平取决于这家公司对预期的管理水平,例如对保费收益、定价的预期,这其中就涉及风险模型的建立。如果一个公司在风险模型方面做得不够到位,就可能导致定价过低,保费收缴不足,进而影响到公司的整体业务水平。精算师善于应对极为复杂的精算模型,通过分析进而拟定储备金和保费的合理水平。
证券时报记者:在海外目前有哪些精算模型受到欢迎?
汤娅·曼宁:举例来说,大数据、预测模型等数据分析方式目前在精算领域越来越受重视。将大量的数据输入模型中,从而得出定价模型,通过这样的方式,精算能够协助保险业推出更合理定价的产品,并且也能合理规划储备水平。
大数据应用加速
证券时报记者:目前很多险企都在探讨如何利用大数据,也在不断寻找最合适的实践方式,大数据如何更广泛为保险行业所用?
汤娅·曼宁:在9月28日的中国精算年会上,有演讲者讲到了保险产品定价的发展历程。最初,定价可能仅仅是基于保险责任范围,用简单的百分比如5%来计算,但这种方式过于简单。随着可使用的方式方法逐渐成熟,精算师开始参与其中,通过处理历史理赔数据进而设定产品价格以及储备金水平。现在,定价过程演变得更为精进,精算师们开始使用统计分析方法,除历史数据资料外,还有其他类型的数据被加入统计模型中。
过去,只需要历史索赔资料及一些数据元素即可完成,而现在需要分析的数据越来越多。
可能存在成百上千种的数据可供电脑分析处理,帮我们分析、定价、并且预期关于索赔的情况。就财险来说,各种各样的因素或数据都可以影响理赔的概率。
证券时报记者:能否与我们分享一些国外精算业运用大数据的较为成功案例?
汤娅·曼宁:这种情况在美国保险市场,尤其是健康保险领域应用得比较普遍。在美国,个人的信贷历史都有可能成为保险公司的参照,成为影响消费者购买保险产品价格的因素。
车险的例子可能更具代表性。过去,保险公司利用驾驶者年龄、过往驾驶历史、意外事故、罚单情况或交通违规等数据资料分析客户,决定车险产品的定价。现在,如果驾驶者允许的话,还可以在车上安装仪器来监测驾驶情况,这样保险公司就能通过观察司机在驾驶过程中与前车保持的距离如何,是否有超速的情况或其他违章情况,搜集更多数据。只要得到允许,保险公司就能采集到更多的数据资料用于车险定价。
证券时报记者:基于大数据,一些车商提出了车联网计划,比如奔驰。在未来的全新市场环境中,车险也将完全改变,您如何看待这样的趋势对精算业可能造成的影响?
汤娅·曼宁:伴随技术的不断发展,相应而言,保险的标的和方式都在不断发生变化。对精算师来说,这一演变是不断持续的,他们需具备相应的能力对新产生的风险进行分析。面向未来,SOA一直不断为精算师们提供支持,让他们在新的技术与风险出现时,能够具备专业的技能来应对这些变化。
寻求与中国精算界合作
证券时报记者:SOA去年推出了财产保险精算师专业发展途径,为什么如此重视财险领域?
汤娅·曼宁:中国的保险市场发展得非常快,而在这些发展领域之中,财险又是发展最快的一个领域,预计到2020年会增长50%。需要更多的精算师投身其中支持这个行业的发展。
证券时报记者:目前SOA的中国会员人数是多少?北美精算师协会与国内保险业界会有哪些合作?
汤娅·曼宁:目前中国的会员人数不断增加,已将近700人,并且有2000多候选人,这是我们在北美外,考生人数第二大地区。在所有会员中,12%~14%来自中国,而参加考试的考生中,30%来自中国,这一数字还在不断上升。北美精算师考试极为严苛,但来自中国的考生表现优异。一般来说,考试的整体通过率在50%左右,但中国考生比来自其他地区的考生普遍高出25%。
另外,我们也正在寻求途径与中国精算师协会开展合作,为精算行业的发展提供支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28