
python实现unicode转中文及转换默认编码的方法
本文实例讲述了python实现unicode转中文及转换默认编码的方法。分享给大家供大家参考,具体如下:
一、在爬虫抓取网页信息时常需要将类似"\u4eba\u751f\u82e6\u77ed\uff0cpy\u662f\u5cb8"转换为中文,实际上这是unicode的中文编码。可用以下方法转换:
1、
>>> s = u'\u4eba\u751f\u82e6\u77ed\uff0cpy\u662f\u5cb8'
>>> print s
人生苦短,py是岸
2、
>>> s = r'\u4eba\u751f\u82e6\u77ed\uff0cpy\u662f\u5cb8'
>>> s = s.decode('unicode_escape')
>>> print s
人生苦短,py是岸
二、另外,在python2的字符编码问题时常会遇到“UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-5: ordinal not in range(128)”的编码错误。
而用以下方法通常可以解决:
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
此方法是将Python2的默认编码ASCII改为 utf-8。但此方法不是一劳永逸的,可能会使一些代码的行为变得怪异。
关于sys.setdefaultencoding('utf-8')的补充:
sys.setdefaultencoding('utf-8') 会导致的两个大问题
简单来说这么做将会使得一些代码行为变得怪异,而这怪异还不好修复,以一个不可见的 bug 存在着。下面我们举两个例子。
1. 编码错误
import chardet
def print_string(string):
try:
print(u"%s" % string)
except UnicodeError:
print u"%s" % unicode(byte_string, encoding=chardet.detect(string)['encoding'])
print_string(u"þ".encode("latin-1"))
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
print(key_in_dict('þ'))
输出:
$~ þ
$~ þ
在上面的代码中,默认的 ascii 编码无法解码,þ latin-1 编码 hex 表示是 c3 be ,显然是超出了只有128个字符的 ascii 码集的,引发 UnicodeError 异常,进入异常处理。异常处理则会根据编码探测,用最可能的编码来解码,会比较靠谱地输出 þ 。
而一旦我们将 defaultencoding 设置为 utf-8,因为 utf-8 的字符范围是完全覆盖 latin-1,因此,会直接使用 utf-8 进行解码。c3 be 在 utf-8 中,是 þ。于是我们打印出了完全不同的字符。
可能你们会说我们不会写这样的代码。如果我们写了也会做修正。但如果是第三方库这么写了呢?项目依赖的第三方库就这么 bug 了。如果你不依赖第三方库,那么下面这个 bug,还是逃不过。
2. dictionray 行为异常
假设我们要从一个 dictionary 里查找一个 key 是否存在,通常来说,有两种可行方法。
#-*- coding: utf-8 -*-
d = {1:2, '1':'2', '你好': 'hello'}
def key_in_dict(key)
if key in d:
return True
return False
def key_found_in_dict(key):
for _key in d:
if _key == key:
return True
return False
我们对比下改变系统默认编码前后这俩函数的输出有什么不同。
#-*- coding: utf-8 -*-
print(key_in_dict('你好'))
print(key_found_dict('你好'))
print(key_in_dict(u'你好'))
print(key_found_in_dict(u'你好'))
print('------utf-8------')
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
print(key_in_dict('你好'))
print(key_found_dict('你好'))
print(key_in_dict(u'你好'))
print(key_found_in_dict(u'你好'))
输出:
$~ True
$~ True
$~ False
$~ False
$~ ------utf-8------
$~ True
$~ True
$~ False
$~ True
可以看到,当默认编码改了之后,两个函数的输出不再一致。
dict 的 in 操作符将键做哈希,并比较哈希值判断是否相等。对于 ascii 集合内的字符来说,不管是字节字符类型还是还是 unicode 类型,其哈希值是一样的,如 u'1' in {'1':1} 会返回 True,而超出 ascii 码集的字符,如上例中的 '你好',它的字节字符类型的哈希与 unicode 类型的哈希是不一样的。
而 == 操作符则是做了一次转换,将字节字符(byte string,上面的 '你好')转换成 unicode(u'你好') 类型,然后对转换后的结果做比较。在 ascii 系统默认编码中,'你好'转换成 Unicode 会产生 Warning: UnicodeWarning: Unicode equal comparison failed to convert both arguments to Unicode - interpreting them as being unequal,因为超出码集无法转换,系统会默认其不相等。当系统编码被我们手动改为 utf-8 后,这个禁忌则被解除,'你好' 能够顺利被转换成 unicode,最后的结果就是,in 和 == 行为不再一致。
问题的根源:Python2 中的 string
Python 为了让其语法看上去简洁好用,做了很多 tricky 的事情,混淆 byte string 和 text string 就是其中一例。
在 Python 里,有三大类 string 类型,unicode(text string),str(byte string,二进制数据),basestring,是前两者的父类。
其实,在语言设计领域,一串字节(sequences of bytes)是否应该当做字符串(string)一直是存在争议的。我们熟知的 Java 和 C# 投了反对票,而 Python 则站在了支持者的阵营里。其实我们在很多情况下,给文本做的操作,比如正则匹配、字符替换等,对于字节来说是用不着的。而 Python 认为字节就是字符,所以他们俩的操作集合是一致的。
然后进一步的,Python 会在必要的情况下,尝试对字节做自动类型转换,例如,在上文中的 ==,或者字节和文本拼接时。如果没有一个编码(encoding),两个不同类型之间的转换是无法进行的,于是,Python 需要一个默认编码。在 Python2 诞生的年代,ASCII 是最流行的(可以这么说吧),于是 Python2 选择了 ASCII。然而,众所周知,在需要需要转换的场景,ASCII 都是没用的(128个字符,够什么吃)。
在历经这么多年吐槽后,Python 3 终于学乖了。默认编码是 Unicode,这也就意味着,做所有需要转换的场合,都能正确并成功的转换。
最佳实践
说了这么多,如果不迁移到 Python 3,能怎么做呢?
有这么几个建议:
所有 text string 都应该是 unicode 类型,而不是 str,如果你在操作 text,而类型却是 str,那就是在制造 bug。
在需要转换的时候,显式转换。从字节解码成文本,用 var.decode(encoding),从文本编码成字节,用 var.encode(encoding)。
从外部读取数据时,默认它是字节,然后 decode 成需要的文本;同样的,当需要向外部发送文本时,encode 成字节再发送。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29