京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从"深蓝"到 AlphaGo丨AI 在游戏领域的升级打怪之路
可以说,AI的发展进化史就是AI在游戏领域的升级史。
SciShow是Youtube上热门的科普向脱口秀节目。它的内容包罗万象,无论什么问题在这里都会得到风趣又详尽的解答。在本次节目中,介绍了AI 是如何在游戏领域通过不断的升级发展,一步步碾压人类的。
CDA字幕组对该视频进行了汉化,附有中文字幕的视频如下:
AI 在游戏领域的发展进化史
针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:
机器赢了。机器如今几乎能够打败人类发明的所有游戏。这都归功于一些我们通过AI实现的技术。
人工智能丨AI
AI最简单定义是: 为解决问题而设计的计算机程序。
大多数程序,包括你此刻看视频用到的,都是不能解决问题的。相反,这些程序执行程序员编写的指令。它们不会自己得出完成任务的方案。而AI会尝试自己得出解决方案。AI越聪明,越能解决更复杂的问题。
自从计算机编程出现以来,我们就开始教AI玩游戏。比如跳棋和国际象棋,还有中国的棋盘游戏——围棋。原因是游戏能很好地衡量AI到底有多聪明。玩游戏并取胜,需要解决问题的能力。解决问题的能力正是衡量智能的标准。因为无论对观众还是计算机程序而言,当中对问题的定义都很明确,没有模棱两可的结果。AI要么能够玩跳棋,要么不能。
游戏是开发新型AI的绝佳实验室环境,这就是为什么AI的发展历史也是AI玩游戏的历史。
跳棋丨Checkers
AI在游戏第一次打败人类对手是一个跳棋程序。
于1950年代,由美国计算机科学家Arthur Samuel开发,在IBM 704计算机上运行。
这台机器通过录入磁盘进行编程。跳棋游戏很简单,但IBM 704是个很简单的机器。它不能通过试错法得出所有可能的棋步,从而得出最佳的移动方式,至少无法在合理的时间内完成。除非采用暴力算法,当中需要大量的数字计算。
计算机算出一个棋步后可能出现的各种棋局,然后选择取胜概率最好的棋步。这个方法尽管不够创新,但切实可行。之后我们再回到这个话题。
问题是,暴力算法需要大量的计算资源,从而对数字进行计算,然而在1950年代没有那些资源。因此,最初AI玩游戏主要靠的是启发法(heuristics)。从此之后所有的AI用到了启发法。
启发法是经验法则(rule of thumb),尽管不是一直都正确,但是大多时候是正确的。在计算机科学中,启发法是一种算法。通过选择并不是最好,但足够解决问题的方案,以此来限制蛮力搜索。
一旦跳棋算法发现能够吃掉对手棋子的棋步,然后就停止了,就按这个棋步走。这种简单的启发法足以攻克跳棋。
扑克牌丨Poker
接下来,AI面对的是扑克牌游戏。
1970年代,计算机科学家Donald Waterman编写能够玩抽牌扑克游戏的程序。该游戏给玩家5张牌,可以最多换3张牌。
当中他开发了所谓的"生产系统"(production system)。如今AI当中都包含这一技术。
生产系统使用预先编好的规则来对符号进行分类,比如扑克牌的符号。Watermen开发的系统根据手上已有的牌,对牌的价值大小进行分类。比如一张梅花4,就其本身而言无足挂齿,但如果你手上还有一张方片4和一张黑桃4,那么这张梅花4的价值就会大幅提升。系统将评估这手牌的好坏,以及选择出手还是弃牌。通过把这手牌的价值,与预先编程的所谓好牌和坏牌进行比较。
启发法与生产系统。
前者要依靠经验法则;后者则根据复杂的规则比较系统。这两者的结合,让AI玩简单的棋类游戏变得轻而易举。
但是国际象棋不是简单的棋类游戏,而是更复杂的棋类游戏,要想取胜则需要运用一些成熟技术。
沉思 丨Deep Thought
1980年代,第一批国际象棋机在卡内基梅隆大学诞生。
这些早期的机器中,最成功的是"沉思"(Deep Thought)。每秒能计算70万个棋步。
1988年,Deep Thought试图击败一名国际象棋高手。但那并不是一般的象棋高手,这位棋圣在八 九十年代甚至如今,一直是世界上最顶尖的国际象棋高手。他就是加里·卡斯帕罗夫。
开始Deep Thought根本不是卡斯帕罗夫的对手,打败卡斯帕罗夫需要更快更强大的机器。对Deep Thought进行升级,包括以下改进:
第一、需要更多的内存和多处理器,即计算能力。Deep Thought的后代产品"深蓝"(Deep Blue)应运而生,它是更强大的机器。
第二、更好的软件。当处理数以百万计互相对比的搜索结果时,速度慢是个大问题。为此,深蓝被设计为适合并行处理。另外,系统还要考虑衡量一些更微妙的棋位。换句话说,采用了更优的启发法。
深蓝丨 Deep Blue
第一代深蓝的搜索速度约为每秒5千万到1亿个棋位。与Garry 卡斯帕罗夫对战时,它以2:4惨败给对手。每秒计算1亿个棋位,仍不足以击败人类的国际围棋冠军。
为此,深蓝团队在系统中增加了一倍的芯片,同时改进了软件,使每个芯片效率提升了25%。1997年与卡斯帕罗夫再次对战时,其运算速度达到了每秒3亿棋位,从而大获全胜。
深蓝的胜利是计算机程序中的伟大壮举。当深蓝击败卡斯帕罗夫时,它是当时世界上最复杂的AI。但总体还是靠暴力算法来实现的。对己方或对方的每个可能的棋步进行暴力搜索,然后选出获胜概率最大的棋步。如果无法战胜对方,程序员升级程序从而计算更多的数字,但这种方法对围棋就不适用了。
围棋丨Go
我们之前的节目说过,谷歌的AlphaGo在2016年3月,击败了世界围棋冠军李世石。但是让我们探究一下,为什么AI攻克围棋是艰巨的任务。
如果你生活在西方国家,你可能对围棋不熟悉。围棋是一个中国的棋类游戏,数千年来其规则从未改变。有时被描述为"东方版国际象棋”,但是围棋要比国际象棋复杂得多,尤其对计算机而言。
首先,围棋棋盘比国际象棋要大。
围棋棋盘为19×19的网格,国际象棋棋盘为8×8。但这实际低估了围棋的复杂性,因为围棋的棋子不是放在网格中,而是放在四个角上。也就是说每个网格代表四种可能的位置,即与周围网格的交叉点。总而言之,围棋中的棋步组合比宇宙中原子数量还多。
其次,围棋中每个棋子都同等重要。
这与国际象棋不同,比如国际象棋中,后就比兵要重要。这种关系是可以通过编程让AI理解的,比如输入生产系统。但是围棋棋子的价值取决于,各个棋子在棋盘位置的相互关系。
围棋的目标是用在对弈过程中,以双方棋子所围"地"的大小决定胜负,所以每次棋步都是很主观的。甚至高水平的棋手有时也很难解释,他们是如何判断每个棋步和好坏。
计算机不擅长的领域就是主观性,以及计算万亿次的位置。因此深蓝的暴力算法对于围棋是完全不可取的。
阿尔法狗丨AlphaGo
AlphaGo并不是采用暴力算法的系统,而是使用深度神经网络。面部识别也是利用的该技术。并不是对一个个棋子的位置进行计算,而是通过寻找棋盘中的模式。
如同面部识别系统会搜寻眼睛、鼻子、嘴等图像。AlphaGo寻找提供强大或薄弱战术的棋子模式。但它要如何明确什么会带来有力或不利的局面呢? 我们提过每个特定位置的价值是主观的,不是么?
那么你需要了解深度神经网络的运行原理。
深度神经网络由不同机器系统的层构成,这称为神经元。这些神经元全都堆叠在一起、并行运行。从而神经网络能够对同一个问题,从多个不同角度、同时进行分析。
每个层根据不同标准评判同一图像,其中一层将看到围棋棋盘的图像,选出当中所有合理的棋步;下一层将找到棋盘中还未被控制的区域;再下面一层会追踪,自从一位棋手在任何区域落子,已经过了多久时间。从而告诉系统,哪片区域目前处于争夺状态,哪片区域暂时安全、可以先忽视。接下来的一层,会把白字黑字的模式与内部数据库进行比较,看目前棋局是否类似之前看到过的。诸如此类。
AlphaGo的神经元共用48层,每一层都用不同的方式分析棋局,并且这些层相互传递信息。因此如果某层发现很有利的棋步,那么其他层就会关注棋局的这个部分。一旦所有层都认同,某个棋步符合它们判断好棋的标准,AlphaGo就会落子。通过这种方式使用深度神经网络,系统就能模仿人类的直觉和创造力。
最终,AlphaGo以4:1击败李世石,李世石相当于围棋领域的卡斯帕罗夫。但AlphaGo只会变得越来越聪明。
AI的下一个挑战丨 What’s next
在游戏领域 AI几乎没有尚未攻克的挑战了,围棋是人类设计的最复杂的棋类游戏。但我还想看AI挑战魔镇惊魂(Arkham Horror:一款难度颇高的桌游)。
总之,我们设计了AlphaGo和深蓝。这些程序都是人类智力和好奇心的表现。
如果我们开发的AI能够在最复杂的游戏中击败该领域的人类顶尖高手,那么谁知道我们还能做出什么呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07