京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python实现的二叉树定义与遍历算法实例
本文实例讲述了python实现的二叉树定义与遍历算法。分享给大家供大家参考,具体如下:
初学python,需要实现一个决策树,首先实践一下利用python实现一个二叉树数据结构。建树的时候做了处理,保证建立的二叉树是平衡二叉树。
# -*- coding: utf-8 -*-
from collections import deque
class Node:
def __init__(self,val,left=None,right=None):
self.val=val
self.left=left
self.right=right
#setter and getter
def get_val(self):
return self.val
def set_val(self,val):
self.val=val
def get_left(self):
return self.left
def set_left(self,left):
self.left=left
def get_right(self):
return self.right
def set_right(self,right):
self.right=right
class Tree:
def __init__(self,list):
list=sorted(list)
self.root=self.build_tree(list)
#递归建立平衡二叉树
def build_tree(self,list):
l=0
r=len(list)-1
if(l>r):
return None
if(l==r):
return Node(list[l])
mid=(l+r)/2
root=Node(list[mid])
root.left=self.build_tree(list[:mid])
root.right=self.build_tree(list[mid+1:])
return root
#前序遍历
def preorder(self,root):
if(root is None):
return
print root.val
self.preorder(root.left)
self.preorder(root.right)
#后序遍历
def postorder(self,root):
if(root is None):
return
self.postorder(root.left)
self.postorder(root.right)
print root.val
#中序遍历
def inorder(self,root):
if(root is None):
return
self.inorder(root.left)
print root.val
self.inorder(root.right)
#层序遍历
def levelorder(self,root):
if root is None:
return
queue =deque([root])
while(len(queue)>0):
size=len(queue)
for i in range(size):
node =queue.popleft()
print node.val
if node.left is not None:
queue.append(node.left)
if node.right is not None:
queue.append(node.right)
list=[1,-1,3,4,5]
tree=Tree(list)
print '中序遍历:'
tree.inorder(tree.root)
print '层序遍历:'
tree.levelorder(tree.root)
print '前序遍历:'
tree.preorder(tree.root)
print '后序遍历:'
tree.postorder(tree.root)
输出:
中序遍历
-1
1
3
4
5
层序遍历
3
-1
4
1
5
前序遍历
3
-1
1
4
5
后序遍历
1
-1
5
4
3
建立的二叉树如下图所示:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16