
【每周一期-数据蒋堂】从SQL语法看离散性
所谓离散性,是指集合的成员可以游离在集合之外存在并参与运算,游离成员还可以再组成新的集合。从离散性的解释上可以知道,离散性是针对集合而言的一种能力,离开集合概念单独谈离散性就没有意义了。
离散性是个很简单的特性,几乎所有支持结构(对象)的高级语言都天然支持,比如我们用Java时都可以把数组成员取出来单独计算,也可以再次组成新的数组进行集合运算(不过Java几乎没有提供集合运算类库)。
但是SQL的离散性却很差。
SQL体系中有记录的概念,但并没有显式的记录数据类型。单条记录被SQL作为只有一条记录的临时表处理,也就是个单成员的集合。而且,SQL从表(集合)中取出记录时总是复制出一条新记录,和原表中的记录已经没有关系了,这个特性被称为immutable。immutable特性有助于保证代码的正确性和简单性,但也会丧失离散性。
缺失离散性会带来代码的繁琐和效率的低下。
比如要计算张三和李四的年龄差和工资差,SQL要写成两句:
SELECT (SELECT age FROM employee WHERE name='张三') - ( SELECT age FROM employee WHERE name='李四') FROM dual
SELECT (SELECT salary FROM employee WHERE name='张三') - ( SELECT salary FROM employee WHERE name='李四') FROM dual
这不仅书写麻烦,而且要重复查询。
如果支持较好的离散性,我们可以写成这样:
a = employee.select@1(name="张三")
b = employee.select@1(name="李四")
agediff=a.age-b.age
salarydiff=a.salary-b.salary
查询结果可以游离在集合外独立存在,并可以反复使用。
immutable特性会要求每次运算都复制数据,这在只读的运算中还只是浪费时间和空间影响效率,但如果要改写数据时,造成的麻烦就严重得多。
比如我们想对业绩在前10%销售员再给予5%的奖励。一个正常思路是先把业绩在前10%的销售员找出来,形成一个中间集合,然后再针对这个集合的成员执行奖励5%的动作。但由于SQL缺乏离散性,immutable特性导致满足条件的记录再形成的集合和原记录是无关的,在中间结果集上做修改没有意义。这样就迫使我们要把整个动作写成一个语句,直接在原表中找到满足条件的记录再加以修改,而前10%这种条件并不容易简单地在WHERE子句中写出来,这又会导致复杂的子查询。这还只是个简单例子,现实应用中比这复杂的条件比比皆是,用子查询也很难写出,经常采用的办法则是先把满足条件的记录的主键计算出来,再用这些主键到原表中遍历找到原记录去修改,代码繁琐且效率极为低下。
如果语言支持离散性,我们就可以执行上述思路了:
a=sales.sort@z(amount).to(sales.len()*0.1) //取出前业绩在10%的记录构成一个新集合
a.run(amount=amount*1.05) //针对集合成员执行奖励5%动作
从上面两个简单例子可以看出,缺失离散性会加剧分步计算的困难,immutable特性会降低性能并占用空间。当然,离散性的问题还不止于此。
不能用原集合的成员构成新集合再进行计算,SQL在做分组时无法保持分组子集,必须强迫聚合,作为集合化语言,SQL的集合化并不彻底。没有游离记录及其集合的表示方法,只能用传统的外键方案表示数据之间的关联关系,写出的代码即繁琐又难懂,而且运算性能还差,缺乏离散性的SQL无法采用直观的引用机制描述关联。特别地,没有离散性的支持,SQL很难描述有序计算,有序计算是离散性和集合化的典型结合产物,成员的次序在集合中才有意义,这要求集合化,有序计算时又要将每个成员与相邻成员区分开,会强调离散性。
这些具体内容我们会在后续文档中逐步详细说明。我们要从理论上改进SQL(或者更合适的说法是关系代数),主要工作就是在保持集合化的基础上引入离散性,从而解决上述问题,让新的语言能够同时拥有SQL和Java的优点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13