京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从历史变革中认识和发展大数据
“大数据”的概念从问世到现在已有5年历史,这个概念从诞生到发展在全球引起了一次又一次热潮,经久不衰。为什么会这样?
从历史和全局战略认识大数据
大数据的浪潮翻涌至今,我认为有两个重要因素在起推动作用。第一个是人类社会在发展过程中对信息的渴求。在人类社会发展的所有时间里,信息一直是人和人类社会发展的最重要的内容。但是为什么直到5年前才“突然”出现大数据的概念?就是第二个因素——以传感技术、互联网、移动智能终端为代表的一系列新的信息技术,使得信息的获取、利用、集聚在数量上发生了突飞猛进的变化。
从这样的角度去分析,由于技术和信息内在的联系,我们会看到这两支力量在未来大数据为代表的信息时代的重要性将会进一步凸现,这是历史的角度。
我们还需要从全局的角度再来看一下大数据。2011年大数据概念产生的时候,当年4月份英国《经济学人》刊登了一篇专题文章论述“第三次工业革命”,指出大数据在其中发挥着重要作用。
是这样吗?至少我们看到了一系列重大变化:产业互联网、工业4.0、先进制造业、智能制造、中国制造2025……从中国2008年开始持续推进两化融合到两化深度融合,从电子商务到3D打印,从远程治疗到智慧治疗,从远程教育到智能教育……一系列经济和社会发展的新概念都在发生变化,我们从这样的发展变革中看到所有这些变化背后都有大数据在其中发挥着极其重要的作用。
为什么我们要从这两个角度去看大数据?由于技术进步和社会发展的需求,人类社会发展进入新的历史阶段,新的基础性技术力量和新的资源概念正在诞生。这个新的技术力量使信息技术和工业技术融合在一起,使我们从产品服务、生活管理等方面有了一个迈上新台阶的生产力构建。这个生产力构成的背后是人类社会自工业革命以来,由物质和能源建设的进步推动的社会发展演变成由能源、信息、产业三种资源共同推动社会的发展。
因此,大数据的热潮有其必然性、深刻性和广泛性。因此我们要重视大数据,用好大数据,否则便不能跟上历史发展的潮流。
从问题和价值导向来推动大数据产业
大数据技术我们面临什么问题?价值在哪?制高点在哪?
从技术的角度来看,主要有两大问题:一是大数据以每隔几年提升一个数量级的角度看,如今的计算机处理体系——以芯片为基础的处理体系机构是不是适应大数据发展的需要?答案很清晰,不是。迄今为止,以X86为代表、以ARM为代表、以存储芯片为代表的三个芯片架构从逻辑上来说都不符合大数据处理的需求,所以要从芯片开始重构适合大数据发展的处理需求。也即,要有新的芯片和新的处理结构,这是问题价值制高点。当真正满足大数据处理的芯片被设计出来,谁就站上了制高点。
从产业角度看,大数据产业大概可以分为两类:一类是“技术变成产业”,就像当年数据库管理系统变成了数据库公司,当真正的大数据处理芯片和计算架构形成时还将会形成新的产业;另一类是各个企业、机构甚至个人——以后我们很多“个人”都可以变成大数据的拥有者。
千万不要小看这点,我们对历史总是很容易健忘。20年前,很多机构包括中央部门,数据库量级是以G为代表的,而今个人都可以拥有T级的数据。这样的企业、机构、个人如何使数据管理应用成本更低、效率更高,这需要产业的支撑。因此谁能为这些“个体”的大数据应用提供便利,谁就会在发展过程中形成增值的发展基础。
然而从应用的角度看,大数据最重要的含义不在上述技术和产业,而是在于,所有企业、机构和个人如何将大数据变成我们提升能力、提升竞争力、提升生活质量的来源。那么在这个命题上,当前大数据应用的主要问题是什么?
我认为第一个问题是,数据有没有用、能不能用,能不能变成提高劳动生产力和提高市场占有率、提高创新能力、降低成本提升效率的源泉。这是社会进步的根本所在,也是大数据的本质所在。
所以,不管是企业还是机构,在讲大数据应用的时候,首先要解决的问题是“大数据能贡献什么价值”,然后通过这样的分析再去看大数据在哪,怎么才能得到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04