京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在Python中定义和使用抽象类的方法
提起Java的抽象类大家都比较熟悉,Python中我们可以使用abc模块来构建抽象类,这里就为大家讲解在Python中定义和使用抽象类的方法
像java一样python也可以定义一个抽象类。
在讲抽象类之前,先说下抽象方法的实现。
抽象方法是基类中定义的方法,但却没有任何实现。在java中,可以把方法申明成一个接口。而在python中实现一个抽象方法的简单的方法是:
class Sheep(object):
def get_size(self):
raise NotImplementedError
任何从Sheep继承下来的子类必须实现get_size方法。否则就会产生一个错误。但这种实现方法有个缺点。定义的子类只有调用那个方法时才会抛错。这里有个简单方法可以在类被实例化后触发它。使用python提供的abc模块。
import abc
class Sheep(object):
__metaclass__ = abc.ABCMeta
@abc.absractmethod
def get_size(self):
return
这里实例化Sheep类或任意从其继承的子类(未实现get_size)时候都会抛出异常。
因此,通过定义抽象类,可以定义子类的共同method(强制其实现)。
如何使用抽象类
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def load(self, input):
return
@abc.abstractmethod
def save(self, output, data):
return
通过ABCMeta元类来创建一个抽象类, 使用abstractmethod装饰器来表明抽象方法
注册具体类
class B(object):
def load(self, input):
return input.read()
def save(self, output, data):
return output.write(data)
A.register(B)
if __name__ == '__main__':
print issubclass(B, A) # print True
print isinstance(B(), A) # print True
从抽象类注册一个具体的类
子类化实现
class C(A):
def load(self, input):
return input.read()
def save(self, output, data):
return output.write(data)
if __name__ == '__main__':
print issubclass(C, A) # print True
print isinstance(C(), A) # print True
可以使用继承抽象类的方法来实现具体类这样可以避免使用register. 但是副作用是可以通过基类找出所有的具体类
for sc in A.__subclasses__():
print sc.__name__
# print C
如果使用继承的方式会找出所有的具体类,如果使用register的方式则不会被找出
使用__subclasshook__
使用__subclasshook__后只要具体类定义了与抽象类相同的方法就认为是他的子类
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def say(self):
return 'say yeah'
@classmethod
def __subclasshook__(cls, C):
if cls is A:
if any("say" in B.__dict__ for B in C.__mro__):
return True
return NotTmplementd
class B(object):
def say(self):
return 'hello'
print issubclass(B, A) # True
print isinstance(B(), A) # True
print B.__dict__ # {'say': <function say at 0x7f...>, ...}
print A.__subclasshook__(B) # True
不完整的实现
class D(A):
def save(self, output, data):
return output.write(data)
if __name__ == '__main__':
print issubclass(D, A) # print True
print isinstance(D(), A) # raise TypeError
如果构建不完整的具体类会抛出D不能实例化抽象类和抽象方法
具体类中使用抽象基类
import abc
from cStringIO import StringIO
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def retrieve_values(self, input):
pirnt 'base class reading data'
return input.read()
class B(A):
def retrieve_values(self, input):
base_data = super(B, self).retrieve_values(input)
print 'subclass sorting data'
response = sorted(base_data.splitlines())
return response
input = StringIO("""line one
line two
line three
""")
reader = B()
print reader.retrieve_values(input)
打印结果
base class reading data
subclass sorting data
['line one', 'line two', 'line three']
可以使用super来重用抽象基类中的罗辑, 但会迫使子类提供覆盖方法.
抽象属性
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractproperty
def value(self):
return 'should never get here.'
class B(A):
@property
def value(self):
return 'concrete property.'
try:
a = A()
print 'A.value', a.value
except Exception, err:
print 'Error: ', str(err)
b = B()
print 'B.value', b.value
打印结果,A不能被实例化,因为只有一个抽象的property getter method.
Error: ...
print concrete property
定义抽象的读写属性
import abc
class A(object):
__metaclass__ = abc.ABCMeta
def value_getter(self):
return 'Should never see this.'
def value_setter(self, value):
return
value = abc.abstractproperty(value_getter, value_setter)
class B(A):
@abc.abstractproperty
def value(self):
return 'read-only'
class C(A):
_value = 'default value'
def value_getter(self):
return self._value
def value_setter(self, value):
self._value = value
value = property(value_getter, value_setter)
try:
a = A()
print a.value
except Exception, err:
print str(err)
try:
b = B()
print b.value
except Exception, err:
print str(err)
c = C()
print c.value
c.value = 'hello'
print c.value
打印结果, 定义具体类的property时必须与抽象的abstract property相同。如果只覆盖其中一个将不会工作.
error: ...
error: ...
print 'default value'
print 'hello'
使用装饰器语法来实现读写的抽象属性, 读和写的方法应该相同.
import abc
class A(object):
__metaclass__ = abc.ABCMeta
@abc.abstractproperty
def value(self):
return 'should never see this.'
@value.setter
def value(self, _value):
return
class B(A):
_value = 'default'
@property
def value(self):
return self._value
@value.setter
def value(self, _value):
self._value = _value
b = B()
print b.value # print 'default'
b.value = 'hello'
print b.value # print 'hello'
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13