
量子计算机将如何改变AI、机器学习、大数据?答案是更快更强
据福布斯杂志报道,我们每天能产生2.5EB(约合10亿GB)数据,这相当于25万个美国国会图书馆或500万台笔记本电脑记录的内容。我们有32亿个全球互联网用户,他们每分钟在Pinterest上发布9722个Pin,在Twitter发布347222条消息,在Facebook上留下420万个“点赞”,我们还通过拍照和视频、保存文件、打开账户等行为产生其他大量数据。
我们正处于传统计算机数据处理能力的极限,而数据却依然在不断增长。虽然摩尔定律(Moore’s Law)预测集成电路上的晶体管数量每隔两年就会翻一番,但自1965年这个术语出现以来,事实证明它具有很强的弹性。随着技术的进步,这些晶体管现在的体积越来越小。正因为如此,业界领导者们展开了激烈竞争,看谁能首先要推出一款比现有计算机更强大的量子计算机,来处理我们每天产生的所有数据,并解决日益复杂的问题。
量子计算机能快速解决复杂问题
当这些行业领袖成功地制造出商业上可行的量子计算机时,那么这些计算机就有可能在几秒钟内完成庞大的计算量,这些任务可能需要传统计算机花费数千年时间才能完成。
今天,谷歌宣称已经拥有这样一种量子计算机,据说它的速度比当今任何一种计算系统都快1亿倍。如果我们能用它处理生成的大量数据并解决非常复杂的问题,那将是至关重要的。成功的关键是把现实世界中的问题转化为量子语言。
我们生成的数据集的复杂性和增长规模远比计算技术进步快得多,因此对我们的计算结构造成了相当大的压力。虽然今天的计算机难以解决或无法解决某些问题,但这些问题预计将被量子计算机在几秒钟内破解。
据预测,人工智能(AI),尤其是机器学习,可以从量子计算技术的进步中获益,而且还会继续持续下去,即使是在完整的量子计算解决方案出现之前。量子计算算法使我们能够增强机器学习的能力。
量子计算机将优化解决方案
量子计算将促进数字革命的另一种方式是,我们能够对数据进行采样,并优化我们遇到的各种问题(从组合分析到最佳递送路线等),甚至能帮助确定每个人的最佳治疗方案和医疗方案。
我们正处在大数据增长的关键点上,我们已经改变了我
们的计算机架构,这就需要用不同的计算方法来处理大数据。它不仅规模更大,而且我们要解决的问题也变得不同。量子计算机更能有效地解决连续性问题。他们给予企业甚至消费者做出更好决策的能力,而这正是说服企业在新技术方面投资所需要的。
量子计算机可以识别大数据集中的模式
预计量子计算将能够搜索非常大的、未排序的数据集,以非常快的速度发现模式或异常。量子计算机可以同时访问数据库中的所有条目,从而在几秒钟内识别出这些相似点。虽然这在理论上是可能的,但它只发生在一个并行的计算机上,并且只能以一个接一个的方式查看每个记录,所以它花费了大量的时间,并且取决于数据集的大小,它可能永远不会成为现实。
量子计算机可以帮助整合不同数据集的数据
此外,由于可被用于整合不同的数据集,量子计算机有望获得巨大突破。虽然这在没有人类介入的情况下可能是困难的,但是人类的参与将帮助计算机学会如何在未来整合数据。
因此,如果有不同独特模式的原始数据源,并有研究团队想要比较它们,那么在数据被比较值钱,计算机就必须理解模式之间的关系。为了实现这个目标,需要在分析自然语言的语义方面取得突破,而这正是AI面临的最大挑战之一。然而,人类可以提供输入,然后对未来系统进行训练。
最终,量子计算机将允许快速分析和整合庞大的数据集,这些数据集将改进和改变我们的机器学习和AI能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29