
大数据的未来:人们应该意识到的10个预测
到了2020年,世界上每个人每秒将创造7 MB的数据。在过去的几年里,我们已经创造了比人类历史上更多的数据。大数据席卷全球,并且没有放缓的迹象。人们可能会想,“大数据产业从哪里开始?”以下有10个大数据预测可以回答这个有趣的问题。
1、机器学习将成为大数据应用的下一件大事
当今最热门的技术趋势之一就是机器学习,它也将在未来的大数据中发挥重要作用。根据调研机构Ovum的预测,机器学习将在大数据革命的最前沿。它将帮助企业准备数据并进行预测分析,从而使企业能够轻松克服未来的挑战。
2、隐私将成为最大的挑战
无论是物联网还是大数据,新兴技术面临的最大挑战是数据的安全性和隐私性。人们现在正在创建的数据量以及将来创建的数据量将使隐私更为重要,因为风险将大大提高。据调研机构Gartne公司的研究,到2018年,超过50%的商业道德违规将与数据有关。数据安全和隐私问题将成为大数据行业面临的最大障碍,如果不能有效应对数据安全问题,我们将会看到一大批技术趋势将会昙花一现。
3、将会出现首席数据官这个新的职位
人们可能熟悉首席执行官(CEO),首席营销官(CMO)和首席信息官(CIO),但是否听说过首席数据官(CDO)?如果答案是否定的话,别担心,因为很快就会知道。据调研机构Forrester公司的研究,将会出现首席数据官这个新的职位,企业将任命首席数据官。虽然,首席数据官的任命完全取决于业务类型及其数据需求,但是各行业厂商广泛采用大数据技术,聘请首席数据官将成为常态。
4、数据科学家的需求量很大
如果IT人员仍然不确定选择哪条职业道路,那么最好地选择是开始在数据科学领域的职业生涯。随着数据量的增长和大数据应用的增长,组织对数据科学家、分析师和数据管理专家的需求将激增。数据专业人员的需求与可用性之间的差距将会扩大。这将有助于数据科学家和分析师获得更高的薪酬。那么还在等什么?深入数据科学的世界,将会拥有更美好的未来。
5、企业将购买算法,而不是软件
人们将看到对软件的业务方法将有360度的转变。越来越多的企业将寻求购买算法而不是创建自己的算法。在购买算法后,企业可以自己添加数据。与购买软件相比,购买算法可以为企业提供更多的自定义选项。企业无法根据需要调整软件。事实上,正好相反。企业的业务必须根据软件流程进行调整,但所有这些都将随着销售服务的算法成为重点而结束。
6、对大数据技术的投资将会大幅增长
调研机构IDC分析师表示,“大数据和业务分析的总收入将从2015年的1,220亿美元增加到2019年的1870亿美元。”2017年大数据的业务支出将超过570亿美元。尽管对大数据的商业投资可能因行业而异,但大数据支出的增长将保持一致。制造业将在大数据技术方面投入最多,医疗保健,银行业和资源行业将是最快采用的行业领域。
7、更多的开发人员将加入大数据革命
据统计,目前有600万开发人员正在使用大数据和使用高级分析。这将是世界上33%以上的开发人员。更令人惊奇的是,大数据才刚刚开始,未来数年将出现大量开发大型数据的应用程序,其数量激增。有了更高薪水的经济回报,开发人员就喜欢创建能够处理大数据的应用程序。
8、规范分析将成为商业智能软件的一部分
企业必须为所有业务购买专用软件的时代已经一去不复返了。今天,企业需要单一软件,提供他们所需的所有功能。商业智能软件也将遵循这一趋势,我们将看到在未来添加到该软件的规范分析功能。
IDC公司预测,一半的商业分析软件将采用建立在认知计算功能之上的规范分析。这将有助于企业在适当的时候做出明智的决定。随着软件的智能化,企业可以快速筛选大量的数据,从而获得比竞争对手更大的竞争优势。
9、大数据将帮助企业打破生产力记录
如果企业投资大数据,可以带来更高的投资回报,特别是在提高业务生产力方面。据IDC介绍,投资于这项技术并能快速分析大量数据并提取可操作信息的组织,在生产率方面比竞争对手获得更多的收益。记住,关键是行动。企业需要可付诸行动的信息使其生产力提升到新的高度。
10、大数据将被快速和可操作的数据替代
据一些大数据专家介绍,大数据已经死亡。他们认为,企业甚至没有使用他们能够访问的一小部分数据,而大数据并不总是意味着更好、更快,迟早有一天,大数据将被快速和可操作的数据所取代,这将有助于企业在正确的时间做出正确的决定。企业拥有大量数据,只有有效和快速地分析这些数据,并从中提取可操作的信息,才会带来更多的竞争优势。HERO译
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29