
大数据时代学校管理的创新模式分析
伴随着互联网的发展,大数据的浪潮对于各个领域都产生了深远的影响,在中小学校的管理中,各类信息化管理系统已经取代传统的人工管理模式,随着信息化进程的进一步发展,如何管理海量的数据成为了中小学管理人员面临的挑战。鉴于目前的发展趋势,管理人员有必要转变传统的思维与决策模式,从大数据角度切入,实现学校管理工作的创新。
一、大数据时代的到来
关于“大数据”这一概念,最早由麦肯锡公司在2011年提出,目前,数据已经渗透到了各个领域与行业中。大数据,顾名思义,就是传统数据管理模式无法存储和处理的数据集,大数据不仅是人们获取新知的源泉,也是改变组织机构与市场结构的新技术。大数据有着三个突出的特征:
数据体量大; 数据产生速度快; 数据类别繁多。
笔者所在单位位于山西省沁水县,经过多年的发展,辖区内中小学管理改革工作不断推进,取得了突出的成效,在以往的中小学管理中,数据多采用随机样本处理法,在大数据时代到来后,海量数据不断产生,数据源泉更广阔,变化复杂,导致学校内部管理环境出现了本质的变化,给学校的决策活动带来了不小的困惑。如何适应大数据时代的要求,创新管理模式是现阶段亟待解决的问题。
二、大数据时代学校管理创新模式的应用
(一)强化数据观念
对于中小学校而言,发展是其永恒的主旋律,要实现发展的目的,需要做到科学管理,大数据正是实现创新管理的有益渠道。数据是学生发展的基础,可以为各项精准决策提供依据,数据真实的记录了学校的历史变迁。学校办学理念的完善、办学模式的创新、教育评估机制的制定,都离不开数据的整合与积累。数据资源是中小学实现管理精细化、决策精准化的主要依托,对于学校管理人员而言,需要强化自身的数据观念,做好数据资源的挖掘与利用工作,提高办学质量。
(二)创新管理办法
在大数据时代,各项工作都发生了深刻的变化,大数据让人们掌握了解决问题的新方法:通过数据找到问题的根源,针对性的制定解决策略。在传统管理模式下,中小学难以实现精准化管理,在数据系统方面,也存在种种缺失,缺乏系统性与完整性,教育决策主要由管理层主观决定。迎来大数据时代后,各类新技术推陈出新,学校管理必须从传统管理朝着数据管理的模式转变。在大数据时代之中,每一个师生都会在数据时空中留下特有的印记,这些印记反应出了他们的性格特点、兴趣爱好,学校管理者只要对数据进行精准分析,便可以了解师生的教学、学习需求,从而制定精细化的管理策略。
(三)建立管理模型
纵观西方国家的教育模式,都是通过长时间的发展中逐步摸索、完善而来,经历了诸多的变化,形成了自己的有的管理模式,在大数据时代,我国各个地区也开始研究适宜的学校管理模式。笔者认为,沁水县中小学校有着特殊的历史背景,为了适应大数据时代的管理模式要求,需要积极学习发达国家与地区的先进管理理念,对教育资源进行精准的配置。在大数据时代,主要的教育资源包括三种类型,即教育人才资源、人力资源与人才教育培训资源,在大数据时代,又诞生了信息教育资源、技术资源与管理资源,利用教育大数据、云应用管理与信息技术,可以实现对各类教育资源的合理配置。为此,需要以数据为依托,提高教育管理能力,根据广大师生的要求建立新型管理模式,进一步改善教学管理机制。
(四)拓展管理内容
数据化时代无疑极大推动了学校管理数据化的发展,在长时间的发展过程中,学习积累了大量的科研、管理、教学数据,为数据分析提供了完善的信息支持。学校管理人员需要注重数据的采集、分析,拓展传统的管理内容,加强数据分析,对信息进行有效的把控。如,对于学生的评估,教师只需要利用数据分析即可,不需要囿于自己主观的思维。
在这一过程中,还要关注数据的安全性,大数据将学校的科研、行政、教学、财务信息集合起来,为了充分维护学校教职工、学生的隐私,需要保证数据存储的安全性,这也是大数据时代学校管理工作中需要重点关注的问题。
三、结语
大数据的出现是社会进步、技术发展的必然结果。大数据对于学校的发展既是机遇,也是挑战。直面还是逃避?答案是毫无疑问的。对于中小学管理人员而言,需要树立起全新的管理意识,创新管理思维,直面大数据时代的挑战,提高数据分析和处理能力,同时充分发挥数据分析专家的作用,建设高效的数据治理机制,提升学校的综合效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04