京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代学校管理的创新模式分析
伴随着互联网的发展,大数据的浪潮对于各个领域都产生了深远的影响,在中小学校的管理中,各类信息化管理系统已经取代传统的人工管理模式,随着信息化进程的进一步发展,如何管理海量的数据成为了中小学管理人员面临的挑战。鉴于目前的发展趋势,管理人员有必要转变传统的思维与决策模式,从大数据角度切入,实现学校管理工作的创新。
一、大数据时代的到来
关于“大数据”这一概念,最早由麦肯锡公司在2011年提出,目前,数据已经渗透到了各个领域与行业中。大数据,顾名思义,就是传统数据管理模式无法存储和处理的数据集,大数据不仅是人们获取新知的源泉,也是改变组织机构与市场结构的新技术。大数据有着三个突出的特征:
数据体量大; 数据产生速度快; 数据类别繁多。
笔者所在单位位于山西省沁水县,经过多年的发展,辖区内中小学管理改革工作不断推进,取得了突出的成效,在以往的中小学管理中,数据多采用随机样本处理法,在大数据时代到来后,海量数据不断产生,数据源泉更广阔,变化复杂,导致学校内部管理环境出现了本质的变化,给学校的决策活动带来了不小的困惑。如何适应大数据时代的要求,创新管理模式是现阶段亟待解决的问题。
二、大数据时代学校管理创新模式的应用
(一)强化数据观念
对于中小学校而言,发展是其永恒的主旋律,要实现发展的目的,需要做到科学管理,大数据正是实现创新管理的有益渠道。数据是学生发展的基础,可以为各项精准决策提供依据,数据真实的记录了学校的历史变迁。学校办学理念的完善、办学模式的创新、教育评估机制的制定,都离不开数据的整合与积累。数据资源是中小学实现管理精细化、决策精准化的主要依托,对于学校管理人员而言,需要强化自身的数据观念,做好数据资源的挖掘与利用工作,提高办学质量。
(二)创新管理办法
在大数据时代,各项工作都发生了深刻的变化,大数据让人们掌握了解决问题的新方法:通过数据找到问题的根源,针对性的制定解决策略。在传统管理模式下,中小学难以实现精准化管理,在数据系统方面,也存在种种缺失,缺乏系统性与完整性,教育决策主要由管理层主观决定。迎来大数据时代后,各类新技术推陈出新,学校管理必须从传统管理朝着数据管理的模式转变。在大数据时代之中,每一个师生都会在数据时空中留下特有的印记,这些印记反应出了他们的性格特点、兴趣爱好,学校管理者只要对数据进行精准分析,便可以了解师生的教学、学习需求,从而制定精细化的管理策略。
(三)建立管理模型
纵观西方国家的教育模式,都是通过长时间的发展中逐步摸索、完善而来,经历了诸多的变化,形成了自己的有的管理模式,在大数据时代,我国各个地区也开始研究适宜的学校管理模式。笔者认为,沁水县中小学校有着特殊的历史背景,为了适应大数据时代的管理模式要求,需要积极学习发达国家与地区的先进管理理念,对教育资源进行精准的配置。在大数据时代,主要的教育资源包括三种类型,即教育人才资源、人力资源与人才教育培训资源,在大数据时代,又诞生了信息教育资源、技术资源与管理资源,利用教育大数据、云应用管理与信息技术,可以实现对各类教育资源的合理配置。为此,需要以数据为依托,提高教育管理能力,根据广大师生的要求建立新型管理模式,进一步改善教学管理机制。
(四)拓展管理内容
数据化时代无疑极大推动了学校管理数据化的发展,在长时间的发展过程中,学习积累了大量的科研、管理、教学数据,为数据分析提供了完善的信息支持。学校管理人员需要注重数据的采集、分析,拓展传统的管理内容,加强数据分析,对信息进行有效的把控。如,对于学生的评估,教师只需要利用数据分析即可,不需要囿于自己主观的思维。
在这一过程中,还要关注数据的安全性,大数据将学校的科研、行政、教学、财务信息集合起来,为了充分维护学校教职工、学生的隐私,需要保证数据存储的安全性,这也是大数据时代学校管理工作中需要重点关注的问题。
三、结语
大数据的出现是社会进步、技术发展的必然结果。大数据对于学校的发展既是机遇,也是挑战。直面还是逃避?答案是毫无疑问的。对于中小学管理人员而言,需要树立起全新的管理意识,创新管理思维,直面大数据时代的挑战,提高数据分析和处理能力,同时充分发挥数据分析专家的作用,建设高效的数据治理机制,提升学校的综合效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31