京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python中requests爬去网页内容出现乱码问题解决方法介绍
最近在学习python爬虫,使用requests的时候遇到了不少的问题,比如说在requests中如何使用cookies进行登录验证,这可以查看这篇文章。这篇要解决的问题是如何避免在使用requests的时候出现乱码。
import requests
res=requests.get("https://www.baidu.com")
print res.content
以上就是使用requests进行简单的网页请求数据的方式。但是很容易出现乱码的问题。
我们可以通过在网页上右击查看源代码中查看编码方式:content="text/html;charset=utf-8"->
我们便可以知道网页的编码方式是utf8.由于中文的编码方式为gbk,所以我们需要将编码方式改变为gbk。
我查看了一些资料,说requests可以自动获取网页的编码方式的,并且通过res.encode输出一看是utf8,是的 没错。但是输出来的内容中文存在乱码。 有说可以直接指定获取到内容的encode属性即可,"res.encode='gbk'",但我尝试了不可以的。
python内部的编码方式为utf8,也就是说python在处理其他字符串内容的时候首先要先将内容转化为utf8的编码方式,然后在解码为你想要的编码方式输出。
例如s=”中文” 为str类型的字符串 编码方式为gb2312
需要 s.decode("gb2312")将gb2312编码方式的内容解码为Unicode编码
然后输出的时候要将s的编码方式规定为gbk->s.encode("gbk")
言归正传,我们获取到网页内容res后, 通过res.content.decode("utf8","ignore").encode("gbk","ignore")就不会有乱码了。
这里所使用的ignore属性意思是忽略其中有一场的编码,仅显示有效的编码。
总结
以上就是本文关于python中requests爬去网页内容出现乱码问题解决方法的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27