京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python中requests爬去网页内容出现乱码问题解决方法介绍
最近在学习python爬虫,使用requests的时候遇到了不少的问题,比如说在requests中如何使用cookies进行登录验证,这可以查看这篇文章。这篇要解决的问题是如何避免在使用requests的时候出现乱码。
import requests
res=requests.get("https://www.baidu.com")
print res.content
以上就是使用requests进行简单的网页请求数据的方式。但是很容易出现乱码的问题。
我们可以通过在网页上右击查看源代码中查看编码方式:content="text/html;charset=utf-8"->
我们便可以知道网页的编码方式是utf8.由于中文的编码方式为gbk,所以我们需要将编码方式改变为gbk。
我查看了一些资料,说requests可以自动获取网页的编码方式的,并且通过res.encode输出一看是utf8,是的 没错。但是输出来的内容中文存在乱码。 有说可以直接指定获取到内容的encode属性即可,"res.encode='gbk'",但我尝试了不可以的。
python内部的编码方式为utf8,也就是说python在处理其他字符串内容的时候首先要先将内容转化为utf8的编码方式,然后在解码为你想要的编码方式输出。
例如s=”中文” 为str类型的字符串 编码方式为gb2312
需要 s.decode("gb2312")将gb2312编码方式的内容解码为Unicode编码
然后输出的时候要将s的编码方式规定为gbk->s.encode("gbk")
言归正传,我们获取到网页内容res后, 通过res.content.decode("utf8","ignore").encode("gbk","ignore")就不会有乱码了。
这里所使用的ignore属性意思是忽略其中有一场的编码,仅显示有效的编码。
总结
以上就是本文关于python中requests爬去网页内容出现乱码问题解决方法的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12