京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS生存函数-Kaplan-Meier
一、Kaplan-Meier生存分析(分析-生存函数-Kaplan-Meier)
1、概念:在多数情况下,您都会希望考察两个事件之间的时间分布,比如雇用时长(员工从雇用到离开公司的时间)。但是,这种数据通常包含一些已审查的个案。已审查的个案是没有记录其第二次事件的个案(例如,在调查结束后仍然为公司工作的员工)。Kaplan-Meier过程是已审查的个案出现时估计时间事件模型的一种方法。Kaplan-Meier模型的依据是估计事件发生的每个时间点的条件概率,并取这些概率的乘积限估计每个时间点的生存率。
2、示例。新的AIDS疗法在延长寿命方面是否具有治疗优势?您可以对两组AIDS患者进行研究,一组接受传统疗法,另一组接受实验性疗法。从数据构造Kaplan-Meier模型将允许您比较两组的整体生存率,以确定实验性疗法是否是传统疗法的改进。还可以用图来表示生存或风险函数并对其进行直观比较,以获得更详细的信息。
3、统计量。生存表,包括时间、状态、累积生存和标准误、累积事件和剩余数;以及均值和中位数生存时间,带有标准误和95%置信区间。图:生存、风险、对数生存和1减生存。
4、数据。时间变量应为连续变量,状态变量可以是分类变量或连续变量,因子和层次变量应为分类变量。
5、假设。所关心事件的概率应只取决于初始事件之后的时间(假设绝对时间下的概率不变)。即,从不同时间开始研究的个案(比如,从不同时间开始接受治疗的患者)应有相似的行为。已审查的个案和未审查的个案之间也不应存在系统性差别。例如,如果许多已审查的个案都是情况更为严重的患者,则得到的结果可能会存在偏差。
6、相关过程。Kaplan-Meier过程使用的计算寿命表的方法估计每个事件发生时的生存或风险函数。“寿命表”过程使用保险精算方法进行生存分析,该方法依赖于将观察期划分为较小的时间区间,可能对处理大样本有用。如果您怀疑变量与要控制的生存时间或变量(协变量)相关,则应使用“Cox回归”过程。如果同一个个案中协变量在不同的时间点可以具有不同的值,则应使用带有“依时协变量”的“Cox回归”。
二、比较因子水平(分析-生存函数-Kaplan-Meie-比较因子)
您可以请求统计量以检验因子不同水平的生存分布的等同性。可用统计量包括对数秩、Breslow和Tarone-Ware。选择一个选项指定要进行的比较:跨层整体检验、分层检验、跨层成对检验或分层成对检验。◎对数秩.比较生存分布的等同性的检验。在此检验中,所有时间点均赋予相同的权重。◎Breslow.比较生存分布的等同性的检验。在每个时间点用带风险的个案数对时间点加权。◎Tarone-Ware.比较生存分布的等同性的检验。在每个时间点用历险的个案数的平方根对时间点加权。◎在层上比较所有因子水平.在单次检验中比较所有因子水平,以检验生存曲线的相等性。◎在层上成对比较因子水平.比较每一个相异的因子水平对。不提供成对趋势检验。◎对于每层.对每层的所有因子水平的相等性执行一次单独的检验。如果您没有分层变量,则不执行检验。◎为每层成对比较因子水平.比较每一层的每一个相异的因子水平对。不提供成对趋势检验。如果您没有分层变量,则不执行检验。
因子级别的线性趋势。允许您检验跨因子级别的线性趋势。此选项仅可用于因子水平的整体(而不是成对)比较。
三、保存(分析-生存函数-Kaplan-Meie-保存)
您可以将Kaplan-Meier表的信息保存为新变量,新变量可在以后的分析中用于检验假设或检查假设。您可以将生存函数、生存函数的标准误、危险函数和累积事件保存为新变量。◎生存.累积生存概率估计。默认变量名为前缀sur_加上顺序号。例如,如果已存在sur_1,Kaplan-Meier就分配变量名sur_2。◎生存函数的标准误.累积生存估计的标准误。默认变量名为前缀se_加上顺序号。例如,如果已存在se_1,Kaplan-Meier就分配变量名se_2。◎危险函数.累积风险函数估计。默认变量名为前缀haz_加上顺序号。例如,如果已存在haz_1,Kaplan-Meier就分配变量名haz_2。◎累积事件.当个案按其生存时间和状态代码进行排序时的事件累积频率。默认变量名为前缀cum_加上顺序号。例如,如果已存在cum_1,Kaplan-Meier就分配变量名cum_2
四、选项(分析-生存函数-Kaplan-Meie-选项)
1、统计量。您可以选择为计算的生存函数显示统计量,包括生存分析表、均值和中位数生存时间以及四分位数。如果包含因子变量,则会为每组生成单独的统计量。
通过图可以直观地检查生存函数、1减去生存函数、危险函数和取生存函数的对数。如果包含因子变量,则会为每组绘制函数图。◎生存.在线性刻度上显示累积生存函数。◎1减去生存函数.以线性尺度绘制1减生存函数。◎危险函数.在线性刻度上显示累积风险函数。◎取生存函数的对数.在对数刻度上显示累积生存函数。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20