
SPSS分析:Bootstrap
一、原理:
非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法,也称为自助法。其核心思想和基本步骤如下:
1、采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样。
2、根据抽出的样本计算给定的统计量T。
3、重复上述N次(一般大于1000),得到N个统计量T。
4、计算上述N个统计量T的样本方差,得到统计量的方差。
应该说Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好。通过方差的估计可以构造置信区间等,其运用范围得到进一步延伸。
具体抽样方法举例:想要知道池塘里面鱼的数量,可以先抽取N条鱼,做上记号,放回池塘。进行重复抽样,抽取M次,每次抽取N条,考察每次抽到的鱼当中有记号的比例,综合M次的比例,在进行统计量的计算。
二、支持的过程
1、频率
◎统计表支持均值、标准差、方差、中位数、偏度、峰度和百分位数的bootstrap估计。◎频率表支持百分比的bootstrap估计。
2、描述性
◎描述统计表支持均值、标准差、方差、偏度和峰度的bootstrap估计。
3、探索
◎描述表支持均值、5%切尾均值、标准差、方差、中位数、偏度、峰度和内距的bootstrap估计。◎M估计量表支持Huber的M估计量、Tukey的双权重、Hampel的M估计量和Andrew的Wave的bootstrap估计。◎百分位数表支持百分位数的bootstrap估计。
4、交叉表
◎定向测量表支持Lambda、Goodman和Kruskal Tau、不定性系数和Somers的d的bootstrap估计。◎对称度量表支持Phi、Cramer的V、列联系数、Kendall的tau-b、Kendall的tau-c、Gamma、Spearman相关性和Pearson的R的bootstrap估计。◎风险评估表支持几率比的bootstrap估计。◎Mantel-Haenszel一般几率比表支持ln(Estimate)的bootstrap估计和显著性检验。
5、均值
◎报告表支持均值、中位数、组内中位数、标准差、方差、峰度、偏度、调和均值和几何均值的bootstrap估计。
6、单样本T检验
◎统计表支持均值和标准差的bootstrap估计。◎检验表支持平均值差值的bootstrap估计和显著性检验。
7、独立样本T检验
◎组统计表支持均值和标准差的bootstrap估计。◎检验表支持平均值差值的bootstrap估计和显著性检验。
8、配对样本T检验
◎统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。◎检验表支持均值的bootstrap估计。
9、单因素方差分析
◎描述统计表支持均值和标准差的bootstrap估计。◎多重比较表支持平均值差值的bootstrap估计。◎对比检验表支持对比值的bootstrap估计和显著性检验。
10、GLM单变量
◎描述统计表支持均值和标准差的bootstrap估计。◎参数估计值表支持系数、B的bootstrap估计和显著性检验。◎对比结果表支持差值的bootstrap估计和显著性检验。◎估计边际均值:估计值表支持均值的bootstrap估计。◎估计边际均值:成对比较表支持平均值差值的bootstrap估计。◎两两比较检验:多重比较表支持平均值差值的bootstrap估计。
11、双变量相关
◎描述统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。
12、偏相关
◎描述统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。
13、线性回归
◎描述统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。◎模型概要表支持Durbin-Watson的bootstrap估计。◎系数表支持系数、B的bootstrap估计和显著性检验。◎相关系数表支持相关性的bootstrap估计。◎残差统计表支持均值和标准差的bootstrap估计。
14、Ordinal回归
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
15、判别分析
◎标准化典则判别函数系数表支持标准化系数的bootstrap估计。◎典则判别函数系数表支持非标准化系数的bootstrap估计。◎分类函数系数表支持系数的bootstrap估计。
16、GLM多变量
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
17、线性混合模型
◎固定效应估计值表支持估计值的bootstrap估计和显著性检验。◎协方差参数估计值表支持估计值的bootstrap估计和显著性检验。
18、Generalized Linear Models
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
19、Cox回归
◎方程中的变量表支持系数、B的bootstrap估计和显著性检验。
20、二元Logistic回归
◎方程中的变量表支持系数、B的bootstrap估计和显著性检验。
21、多项Logistic回归
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10