京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析:Bootstrap
一、原理:
非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法,也称为自助法。其核心思想和基本步骤如下:
1、采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样。
2、根据抽出的样本计算给定的统计量T。
3、重复上述N次(一般大于1000),得到N个统计量T。
4、计算上述N个统计量T的样本方差,得到统计量的方差。
应该说Bootstrap是现代统计学较为流行的一种统计方法,在小样本时效果很好。通过方差的估计可以构造置信区间等,其运用范围得到进一步延伸。
具体抽样方法举例:想要知道池塘里面鱼的数量,可以先抽取N条鱼,做上记号,放回池塘。进行重复抽样,抽取M次,每次抽取N条,考察每次抽到的鱼当中有记号的比例,综合M次的比例,在进行统计量的计算。
二、支持的过程
1、频率
◎统计表支持均值、标准差、方差、中位数、偏度、峰度和百分位数的bootstrap估计。◎频率表支持百分比的bootstrap估计。
2、描述性
◎描述统计表支持均值、标准差、方差、偏度和峰度的bootstrap估计。
3、探索
◎描述表支持均值、5%切尾均值、标准差、方差、中位数、偏度、峰度和内距的bootstrap估计。◎M估计量表支持Huber的M估计量、Tukey的双权重、Hampel的M估计量和Andrew的Wave的bootstrap估计。◎百分位数表支持百分位数的bootstrap估计。
4、交叉表
◎定向测量表支持Lambda、Goodman和Kruskal Tau、不定性系数和Somers的d的bootstrap估计。◎对称度量表支持Phi、Cramer的V、列联系数、Kendall的tau-b、Kendall的tau-c、Gamma、Spearman相关性和Pearson的R的bootstrap估计。◎风险评估表支持几率比的bootstrap估计。◎Mantel-Haenszel一般几率比表支持ln(Estimate)的bootstrap估计和显著性检验。
5、均值
◎报告表支持均值、中位数、组内中位数、标准差、方差、峰度、偏度、调和均值和几何均值的bootstrap估计。
6、单样本T检验
◎统计表支持均值和标准差的bootstrap估计。◎检验表支持平均值差值的bootstrap估计和显著性检验。
7、独立样本T检验
◎组统计表支持均值和标准差的bootstrap估计。◎检验表支持平均值差值的bootstrap估计和显著性检验。
8、配对样本T检验
◎统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。◎检验表支持均值的bootstrap估计。
9、单因素方差分析
◎描述统计表支持均值和标准差的bootstrap估计。◎多重比较表支持平均值差值的bootstrap估计。◎对比检验表支持对比值的bootstrap估计和显著性检验。
10、GLM单变量
◎描述统计表支持均值和标准差的bootstrap估计。◎参数估计值表支持系数、B的bootstrap估计和显著性检验。◎对比结果表支持差值的bootstrap估计和显著性检验。◎估计边际均值:估计值表支持均值的bootstrap估计。◎估计边际均值:成对比较表支持平均值差值的bootstrap估计。◎两两比较检验:多重比较表支持平均值差值的bootstrap估计。
11、双变量相关
◎描述统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。
12、偏相关
◎描述统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。
13、线性回归
◎描述统计表支持均值和标准差的bootstrap估计。◎相关性表支持相关性的bootstrap估计。◎模型概要表支持Durbin-Watson的bootstrap估计。◎系数表支持系数、B的bootstrap估计和显著性检验。◎相关系数表支持相关性的bootstrap估计。◎残差统计表支持均值和标准差的bootstrap估计。
14、Ordinal回归
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
15、判别分析
◎标准化典则判别函数系数表支持标准化系数的bootstrap估计。◎典则判别函数系数表支持非标准化系数的bootstrap估计。◎分类函数系数表支持系数的bootstrap估计。
16、GLM多变量
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
17、线性混合模型
◎固定效应估计值表支持估计值的bootstrap估计和显著性检验。◎协方差参数估计值表支持估计值的bootstrap估计和显著性检验。
18、Generalized Linear Models
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
19、Cox回归
◎方程中的变量表支持系数、B的bootstrap估计和显著性检验。
20、二元Logistic回归
◎方程中的变量表支持系数、B的bootstrap估计和显著性检验。
21、多项Logistic回归
◎参数估计值表支持系数、B的bootstrap估计和显著性检验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01