
SPSS最优尺度:非线性典型相关性分析
一、非线性典型相关性分析(分析-降维-最优尺度)
1、概念:非线性典型相关性分析对应于使用最优尺度的分类典型相关性分析。此过程的目的是确定分类变量集相互之间的相似程度。非线性典型相关性分析也用缩写词OVERALS来表示。标准典型相关性分析是多重回归的扩展,其中第二个集不包含单响应变量,而是包含多响应变量。其目标是尽可能解释低维空间中两个数值变量集之间的关系中的方差。最初,每个集内的变量进行线性组合以使线性组合有最大的相关性。有了这些组合,就可以确定后续线形组合与前面的组合无关,并可确定其具有可能的最大相关性。
最优尺度方法在三个重要方面扩展了标准分析。首先,OVERALS允许两个以上的变量集。其次,变量或者可调整为名义、有序,或者调整为数值。因此,可以分析变量间的非线性关系。最后,变量集与一个由对象得分定义的未知折中集进行比较,而不是使变量集之间的相关性最大化。
2、示例。使用最优尺度的分类典型相关性分析可用于以图形方式显示包含工作类别和教育年限的一个变量集与包含居住地区和性别的另一个变量集之间的关系。您可能会发现教育年限与居住地区的区别程度比其余变量高。您还可能发现教育年限在第一维上区别最大。
3、统计量和图。频率、质心、迭代历史记录、对象得分、类别量化、权重、成份载入、单拟合和多拟合、对象得分图、类别坐标图、成份载荷图、类别质心图、转换图。
4、数据。使用整数来编码分类变量(名义或有序尺度级别)。要最小化输出,请使用从1开始的连续整数来编码每个变量。调整为数值级别的变量不应重新编码为连续整数。要最小化输出,对于调整为数值级别的每个变量,从每个值中减去最小观察值然后加上1。小数表示的值则截去小数部分。
5、假设。变量可分成两个或更多变量集。分析中的变量调整为多名义、单名义、有序或数值。过程中使用的最大维数取决于变量的最佳度量水平。如果所有变量都指定为有序、单名义或数值,则最大维数是以下两个值中的较小者:观察次数减1或变量的总数。但是,如果只定义了两个变量集,则最大维数为较小集中的变量数。如果某些变量为多名义,则最大维数为多名义类别的总数加上非多名义变量的数目减去多名义变量的数目。例如,如果分析涉及五个变量,其中一个变量是带有四种类别的多名义变量,则最大维数为(4 + 4–1),即7。如果指定了大于最大值的数,则会使用最大值。
6、相关过程。如果每个集只包含一个变量,则非线性典型相关性分析等效于使用最优尺度的主成分分析。如果所有这些变量都是多名义,则分析对应于多重对应分析。如果涉及两个变量集,并且其中一个仅包含一个变量,则分析等同于使用最优尺度的分类回归。
二、选项(分析-降维-最优尺度-非线性典型相关-选项)
1、显示。可用统计量包括边际频率(计数)、质心、迭代历史记录、权重和成份载入、类别量化、对象得分以及单拟合和多拟合统计量。
1.1、质心.类别量化,对象得分的投影平均值和实际平均值,其中的对象(个案)包含在属于相同变量类别的那些对象的每个集合中。
1.2、权重和成分载入.集合中每个已量化的变量的每个维度的回归系数(其中,在已量化的变量上对对象得分进行回归)以及已量化的变量在对象空间中的投影。它指示每个变量对每个集合中的维度的贡献。
1.3、单拟合和多拟合.对于对象,是对单和多类别坐标/类别量化的拟合优度的测量。
1.4、类别量化.分配给变量类别的最优刻度值。
1.5、对象得分.分配给特定维度中某个对象(个案)的最优得分。
2、图。可生成类别坐标图、对象得分图、成份载荷图、类别质心图以及转换图。
3、保存对象得分。可将对象得分保存为活动数据集中的新变量。对象得分针对在主对框中指定的维数保存。
4、使用随机初始配置。如果部分或全部变量为单名义,则应使用随机初始配置。如果未选择此选项,则使用嵌套初始配置。
5、标准。可以指定非线性典型相关性分析可在其计算中执行的最大迭代次数。还可以选择收敛标准值。如果上两次迭代之间的总拟合之差小于收敛值,或者达到了最大迭代次数,则分析停止迭代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28