京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS最优尺度:非线性典型相关性分析
一、非线性典型相关性分析(分析-降维-最优尺度)
1、概念:非线性典型相关性分析对应于使用最优尺度的分类典型相关性分析。此过程的目的是确定分类变量集相互之间的相似程度。非线性典型相关性分析也用缩写词OVERALS来表示。标准典型相关性分析是多重回归的扩展,其中第二个集不包含单响应变量,而是包含多响应变量。其目标是尽可能解释低维空间中两个数值变量集之间的关系中的方差。最初,每个集内的变量进行线性组合以使线性组合有最大的相关性。有了这些组合,就可以确定后续线形组合与前面的组合无关,并可确定其具有可能的最大相关性。
最优尺度方法在三个重要方面扩展了标准分析。首先,OVERALS允许两个以上的变量集。其次,变量或者可调整为名义、有序,或者调整为数值。因此,可以分析变量间的非线性关系。最后,变量集与一个由对象得分定义的未知折中集进行比较,而不是使变量集之间的相关性最大化。
2、示例。使用最优尺度的分类典型相关性分析可用于以图形方式显示包含工作类别和教育年限的一个变量集与包含居住地区和性别的另一个变量集之间的关系。您可能会发现教育年限与居住地区的区别程度比其余变量高。您还可能发现教育年限在第一维上区别最大。
3、统计量和图。频率、质心、迭代历史记录、对象得分、类别量化、权重、成份载入、单拟合和多拟合、对象得分图、类别坐标图、成份载荷图、类别质心图、转换图。
4、数据。使用整数来编码分类变量(名义或有序尺度级别)。要最小化输出,请使用从1开始的连续整数来编码每个变量。调整为数值级别的变量不应重新编码为连续整数。要最小化输出,对于调整为数值级别的每个变量,从每个值中减去最小观察值然后加上1。小数表示的值则截去小数部分。
5、假设。变量可分成两个或更多变量集。分析中的变量调整为多名义、单名义、有序或数值。过程中使用的最大维数取决于变量的最佳度量水平。如果所有变量都指定为有序、单名义或数值,则最大维数是以下两个值中的较小者:观察次数减1或变量的总数。但是,如果只定义了两个变量集,则最大维数为较小集中的变量数。如果某些变量为多名义,则最大维数为多名义类别的总数加上非多名义变量的数目减去多名义变量的数目。例如,如果分析涉及五个变量,其中一个变量是带有四种类别的多名义变量,则最大维数为(4 + 4–1),即7。如果指定了大于最大值的数,则会使用最大值。
6、相关过程。如果每个集只包含一个变量,则非线性典型相关性分析等效于使用最优尺度的主成分分析。如果所有这些变量都是多名义,则分析对应于多重对应分析。如果涉及两个变量集,并且其中一个仅包含一个变量,则分析等同于使用最优尺度的分类回归。
二、选项(分析-降维-最优尺度-非线性典型相关-选项)
1、显示。可用统计量包括边际频率(计数)、质心、迭代历史记录、权重和成份载入、类别量化、对象得分以及单拟合和多拟合统计量。
1.1、质心.类别量化,对象得分的投影平均值和实际平均值,其中的对象(个案)包含在属于相同变量类别的那些对象的每个集合中。
1.2、权重和成分载入.集合中每个已量化的变量的每个维度的回归系数(其中,在已量化的变量上对对象得分进行回归)以及已量化的变量在对象空间中的投影。它指示每个变量对每个集合中的维度的贡献。
1.3、单拟合和多拟合.对于对象,是对单和多类别坐标/类别量化的拟合优度的测量。
1.4、类别量化.分配给变量类别的最优刻度值。
1.5、对象得分.分配给特定维度中某个对象(个案)的最优得分。
2、图。可生成类别坐标图、对象得分图、成份载荷图、类别质心图以及转换图。
3、保存对象得分。可将对象得分保存为活动数据集中的新变量。对象得分针对在主对框中指定的维数保存。
4、使用随机初始配置。如果部分或全部变量为单名义,则应使用随机初始配置。如果未选择此选项,则使用嵌套初始配置。
5、标准。可以指定非线性典型相关性分析可在其计算中执行的最大迭代次数。还可以选择收敛标准值。如果上两次迭代之间的总拟合之差小于收敛值,或者达到了最大迭代次数,则分析停止迭代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27