京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析—问卷调查从模型到算法
每个人心中都有一个完美的另一半,如何去找到这个自己心中最认可的另一半,在慢慢人生旅途中,我们所经历过的事情,都在影响着我们的决定,影响着我们对另一半的选择,这将是一个重大的问题,关乎着自己未来的无论是物质还是精神上的幸福。这不仅仅是一个运气的问题,还包含着巨大的人生智慧在其中,用你独具慧眼的原则和标准去判断。那么如何在长长的时间轴上判断最优秀的另一半是否出现了呢?是否其中也有哲学在其中呢?是否有量化的策略使得我们成功的几率更大呢?
2.模型始于假设:
假设1:一切皆可量化,两个人在一起取决于价值,外貌、性格、潜力甚至于感情责任等等都可以被量化,最终形成一个人的基本属性——价值,价值越高则越优秀,选择最优秀的人为伴侣;
假设2:基于时间序列,每接触一个人在经历一段时间相处之后不具有可回溯性(即不考虑惊天大逆转,突然屌丝变高帅富),再次和前任谈的时候,考虑到人总是成长的,前任以新的价值属性出现,作为挑选方,对方价值的评估以当时那个时间节点不可变(人总会成长,虽然过去的认知的价值在当前可能被贬低,但被估值的人也会成长),对于价值的评估不会失误到有近乎于极端异常值的判断,在时间轴上异性有先后顺序;
假设3:挑选是单向的,每个人都在寻找心中最高价值的TA,并且知道会遇到多少个异性
模型的量化好坏取决于算法的优劣、假设的合理性,基于以上假设,去推导其中算法:
现在我们的男主,在时间轴上他会遇到N个我们的女主,男主要挑到最优秀的真命女主,假定处于第i个女主是真命女主,为了遇到这个这个真命女主,男主需要去接触k次女主,作为对女主价值的认知,以便进行判断对真命女主的价值的benchmark认知:
第一步:第i个女主是真命女主,那么概率是1/N。
第二步:benchmark的意义在与,前i个女主中,比第i个真命女主价值小的次最大价值女主出现在试探性的1到k个女主中,概率为k/(i-1),这个次最大价值女主为什么不是全域上的最大女主,因为我们遇到了第i个时,第i个女主是假定的最大价值女主,我们不需要i+1到N去挑了。同样的道理,一旦男主接触试探了k个女主,次最大价值女主在1到k时,那么k到i-1女主自然是不用再看了,第一个比1到k中出现的次最大女主价值大的就是真命女主。
那么男主试探k个女主找到真命的概率就是:
3.结论分析
综上可得,目标函数可用。对目标函数求导,发现x=1/e时,一阶导数为0,x<1/e时导数为正,x>1/e时则为负,故而目标函数收敛于x=1/e。代入x=1/e,得到
也就是说,当x=1/e的时候,在我们的男主试探(认识了N*个女主)有最大的概率即约为37%的概率遇到我们的真命女主——那个我们男主最想要的的女主。从理论模型我们回到现实,也即是说当我们的男主在时间序列上遇到了100个女主(N=100),那么我们的男主要认识37次女主(k=37,),以进行判断真命女主,在37次接触中,只要碰到从第37个开始,比前36个价值最高的女主还高,那么该女主就以最大可能性成为我们的最高价值女主。那么这就是你最认可的另一半了。
实际生活中,我们打交道的女生其实远没有那么多,所以当我们认识几个女生以后就开始“收敛”了,从心里我们就认定彼此了。上述算法的结论一般性意义在与:
1.假如你对未来伴侣特别挑剔,那你起码应该适量的多认识几个,尤其是对于那些身边异形很多的朋友,想要遇到自己中意的,可能就需要更多才能有一个比较理性的判断;
2.从“收敛”性看出,不是认识的异形越多越多就会遇到更优秀的人,往往越到最后就会成空。成为一个人的初恋意味着成为别人的“收敛”节点可能性更大,假如你还可以重新加入TA的挑选队列,反言之初恋往往没有好下场也是同样的道理,人是会变的,价值观自然也会变;
3.因为资源有限,好的总是出手或者被出手快,导致身边的异性偏少,越优秀的会越快“收敛”;反言之越优秀可能最后就剩了下来,这是两个极端情况,实际生活中并不少见,晚点结婚对于现代更开放的年轻人来说也是有优势的,处于中间则是最惨的——所以这大约也是被逼婚的重要原因。
更多的结论在实际调查中是有待调研得出的......
我们要做的是能以最大化的几率遇到最优秀的人,以最高的效率遇到你最中意的人,然后就放手去追TA吧!当然,也要去认识到模型的短板,毕竟找到另一半是一个涉及方方面面,是个极为复杂的问题。假设1缺陷在与量化的困难,一个人的价值不是裸露在外面就可以看到的,不然也不会有这么多遇人不淑;假设3的缺陷在与如何去确认N值的大小,虽然一个时期内经过一定时间的沉淀,身边的异性是差不多固定的......这些都不用去管,重要的是模型通过了,只需要添加一些问题:你身边的异性朋友有多少?你的性格是外向、一般、宅男?等等这些问题,只要人们对美的向往心无限,那么我的模型和算法就有可取之处。
从上述模型和算法,我们要知道,做数据分析和数据挖掘必须有着对数据的敏感性,假如过去曾经发生的事对于未来没有任何影响的话,那么TA一定是失败的,我觉得对于任何其他职业也是一样。在真正的数据挖掘和分析师看来,将来的事从来都不是随机,发生过的事情进过一定的“惩罚机制”去放大效果,对于将来的影响是巨大的。一定几率的事可以代表着将近绝对的概率发生,这并不是一句矛盾的话。这正是机器学习的核心所在,细小的变动,于细枝末节处慢慢的体现出对最终结果的影响,发生过的数据一点点的推进学习的步伐,最后就能学习到一定规律的东西。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30