
SPSS最优尺度:分类回归
一、分类回归(分析-回归-最佳尺度)
1、概念:分类回归通过为类别指定数值来量化分类数据,从而生成转换后变量的最优线性回归方程。分类回归也用缩写词CATREG来表示(代表categorical regression)。标准线性回归分析涉及使响应变量(因变量)和预测变量(自变量)的加权组合之间的平方差之和达到最小。变量通常是定量的,(名义)分类数据重新编码为二元变量或对比变量。因此,分类变量用于分离个案组,并且该技术估计每个组的独立的参数集。估计的系数反映了预测变量的变化对响应的影响程度。对于预测变量值的任何组合都可以预测响应。
另一种方法需要对分类预测变量值本身进行响应回归。这样,将为每个变量分别估计一个系数。但是,对于分类变量,类别值是任意的。以不同的方式编码类别将产生不同的系数,这样,在对同样的几个变量的分析进行比较时,难度就增大了。CATREG通过同时调整名义、序数和数值变量扩展了标准方法。该过程量化分类变量以使量化反映初始类别的特征。该过程以与处理数值变量相同的方式处理量化的分类变量。使用非线性转换允许在各种级别分析变量以查找最佳拟合模型。
2、示例。分类回归可用于描述工作满意度对工作类别、地理区域和旅行量的依赖程度。您可能会发现高满意度对应于经理和低旅行量。生成的回归方程可用于针对三个自变量的任何组合预测工作满意度。
3、统计量和图。频率、回归系数、ANOVA表、迭代历史记录、类别量化、未转换的预测变量之间的相关性、转换后的预测变量之间的相关性、残差图和变换图。
4、数据。CATREG在类别指示变量上运行。类别指示符应为正整数。可使用“离散化”对话框将小数值变量和字符串变量转换为正整数。
5、假设。只允许一个响应变量,但是预测变量的最大数目为200。该数据必须至少包含三个有效个案,并且有效个案数必须大于预测变量数加一。
6、相关过程。CATREG等效于使用最优尺度的分类典型相关性分析(OVERALS),该分析有两个变量集,其中一个只包含一个变量。将所有变量调整为数值级别对应于标准多重回归分析。
二、规则化(分析-回归-最佳尺度-规则化)
1、方法。规则化方法可以向0方向缩小回归系数估计,以降低其变异性,从而改善模型的预测误差。
1.1、Ridge回归。Ridge回归引入惩罚项以缩小系数,惩罚项等于系数平方乘以惩罚系数的总和。该系数可从0(无惩罚)到1变化;如果指定了范围与增量,过程将搜索“最佳”的惩罚值。
1.2、套索。套索的惩罚项是基于绝对系数的总和,惩罚系数的指定与Ridge回归类似,但套索涉及更密集的计算。
1.3、弹性网络。“弹性网络”简单地组合套索和Ridge回归惩罚,在指定的值网格中搜索以发现“最佳”的套索和Ridge回归惩罚系数。对于给定的套索与Ridge回归惩罚,“弹性网络”的计算量并不比套索多很多。
2、显示规则化图。这些是回归系数与规则化惩罚图。在搜索某个值范围以寻找“最佳”惩罚系数时,它提供了有关回归系数在该范围上如何变化的视图。
3、弹性网络图。对于“弹性网络”方法,由Ridge回归惩罚值产生单独的规则化图。所有可能图使用指定的最小和最大Ridge回归惩罚值所确定范围中的每个值。为部分Ridge惩罚允许您指定由最小和最大Ridge回归惩罚值所确定范围的值子集。只需键入惩罚值的编号(或指定值范围),然后单击添加。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27