
举例简单讲解Python中的数据存储模块shelve的用法
shelve类似于一个key-value数据库,可以很方便的用来保存Python的内存对象,其内部使用pickle来序列化数据,简单来说,使用者可以将一个列表、字典、或者用户自定义的类实例保存到shelve中,下次需要用的时候直接取出来,就是一个Python内存对象,不需要像传统数据库一样,先取出数据,然后用这些数据重新构造一遍所需要的对象。下面是简单示例:
import shelve
def test_shelve():
# open 返回一个Shelf类的实例
#
# 参数flag的取值范围:
# 'r':只读打开
# 'w':读写访问
# 'c':读写访问,如果不存在则创建
# 'n':读写访问,总是创建新的、空的数据库文件
#
# protocol:与pickle库一致
# writeback:为True时,当数据发生变化会回写,不过会导致内存开销比较大
d = shelve.open('shelve.db', flag='c', protocol=2, writeback=False)
assert isinstance(d, shelve.Shelf)
# 在数据库中插入一条记录
d['abc'] = {'name': ['a', 'b']}
d.sync()
print d['abc']
# writeback是False,因此对value进行修改是不起作用的
d['abc']['x'] = 'x'
print d['abc'] # 还是打印 {'name': ['a', 'b']}
# 当然,直接替换key的value还是起作用的
d['abc'] = 'xxx'
print d['abc']
# 还原abc的内容,为下面的测试代码做准备
d['abc'] = {'name': ['a', 'b']}
d.close()
# writeback 为 True 时,对字段内容的修改会writeback到数据库中。
d = shelve.open('shelve.db', writeback=True)
# 上面我们已经保存了abc的内容为{'name': ['a', 'b']},打印一下看看对不对
print d['abc']
# 修改abc的value的部分内容
d['abc']['xx'] = 'xxx'
print d['abc']
d.close()
# 重新打开数据库,看看abc的内容是否正确writeback
d = shelve.open('shelve.db')
print d['abc']
d.close()
这个有一个潜在的小问题,如下:
>>> import shelve
>>> s = shelve.open('test.dat')
>>> s['x'] = ['a', 'b', 'c']
>>> s['x'].append('d')
>>> s['x']
['a', 'b', 'c']
存储的d到哪里去了呢?其实很简单,d没有写回,你把['a', 'b', 'c']存到了x,当你再次读取s['x']的时候,s['x']只是一个拷贝,而你没有将拷贝写回,所以当你再次读取s['x']的时候,它又从源中读取了一个拷贝,所以,你新修改的内容并不会出现在拷贝中,解决的办法就是,第一个是利用一个缓存的变量,如下所示
>>> temp = s['x']
>>> temp.append('d')
>>> s['x'] = temp
>>> s['x']
['a', 'b', 'c', 'd']
在python2.4以后有了另外的方法,就是把open方法的writeback参数的值赋为True,这样的话,你open后所有的内容都将在cache中,当你close的时候,将全部一次性写到硬盘里面。如果数据量不是很大的时候,建议这么做。
下面是一个基于shelve的简单数据库的代码
#database.py
import sys, shelve
def store_person(db):
"""
Query user for data and store it in the shelf object
"""
pid = raw_input('Enter unique ID number: ')
person = {}
person['name'] = raw_input('Enter name: ')
person['age'] = raw_input('Enter age: ')
person['phone'] = raw_input('Enter phone number: ')
db[pid] = person
def lookup_person(db):
"""
Query user for ID and desired field, and fetch the corresponding data from
the shelf object
"""
pid = raw_input('Enter ID number: ')
field = raw_input('What would you like to know? (name, age, phone) ')
field = field.strip().lower()
print field.capitalize() + ':', \
db[pid][field]
def print_help():
print 'The available commons are: '
print 'store :Stores information about a person'
print 'lookup :Looks up a person from ID number'
print 'quit :Save changes and exit'
print '? :Print this message'
def enter_command():
cmd = raw_input('Enter command (? for help): ')
cmd = cmd.strip().lower()
return cmd
def main():
database = shelve.open('database.dat')
try:
while True:
cmd = enter_command()
if cmd == 'store':
store_person(database)
elif cmd == 'lookup':
lookup_person(database)
elif cmd == '?':
print_help()
elif cmd == 'quit':
return
finally:
database.close()
if __name__ == '__main__': main()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28