
SPSS复杂样本:复杂样本统计过程
一、复杂样本频率(分析-复杂抽样-频率)
“复杂样本频率”过程可以为所选变量生成频率表并显示单变量统计。您还可以按子组请求统计量,子组由一个或多个分类变量定义。
1、示例。使用“复杂样本频率”过程,基于全美国健康访问调查(NHIS)的结果和这一公用数据的适当分析计划,可以获得美国公民维生素使用情况的单变量制表统计量。
2、统计量。该过程生成单元总体大小和表百分比的估计值,以及每个估计值的标准误、置信区间、变异系数、设计效果、设计效果平方根、累计值和未加权的计数。此外,还计算等单元比例检验的卡方和似然比统计量。
3、数据。要为其生成频率表的变量应为分类变量。子体变量可以是字符串或数值,但应该是分类变量。
4、假设。数据文件中的个案代表来自复杂设计的一个样本,该样本应根据在“复杂样本计划”对话框中所选文件内的指定项进行分析。
二、复杂样本描述(分析-复杂抽样-描述)
“复杂样本描述”过程为多个变量显示单变量摘要统计量。您还可以按子组请求统计量,子组由一个或多个分类变量定义。
1、示例。使用“复杂样本描述”过程,基于全美国健康访问调查(NHIS)的结果和这一公用数据的适当分析计划,可以获得美国公民活动水平的单变量描述统计量。
2、统计量。该过程生成均值和总和,以及每个估计值的t检验、标准误、置信区间、变异系数、未加权的计数、总体大小、设计效果和设计效果平方根。
3、数据。测量应为尺度变量。子体变量可以是字符串或数值,但应该是分类变量。
4、假设。数据文件中的个案代表来自复杂设计的一个样本,该样本应根据在“复杂样本计划”对话框中所选文件内的指定项进行分析。
复杂样本交叉表过程可以为所选变量对生成交叉表并显示二阶统计量。您还可以按子组请求统计量,子组由一个或多个分类变量定义。
1、示例。使用“复杂样本交叉表”过程,基于全美国健康访问调查(NHIS)的结果和这一公用数据的适当分析计划,可以获得美国公民维生素使用量和抽烟频率的交叉分类统计量。
2、统计量。该过程生成单元格总体大小、行百分比、列百分比和表百分比的估计值,以及每个估计值的标准误、置信区间、变异系数、期望值、设计效果、设计效果平方根、残差、调整的残差和未加权的计数。计算几率比、相对风险和危险度差值以在2x2表中使用。此外,还计算Pearson和似然比统计量用于行变量和列变量的独立性检验。
3、数据。行变量和列变量应是分类变量。子体变量可以是字符串或数值,但应该是分类变量。
4、假设。数据文件中的个案代表来自复杂设计的一个样本,该样本应根据在“复杂样本计划”对话框中所选文件内的指定项进行分析。
四、复杂样本比率(分析-复杂抽样-比率)
“复杂样本比率”过程显示变量的比率的单变量摘要统计。您还可以按子组请求统计量,子组由一个或多个分类变量定义。
1、示例。使用“复杂样本比率”过程,基于全国范围调查(根据一项复杂设计并采用适合数据的分析计划进行)的结果,可以获取当前财产价值与上次评估价值的比率的描述统计量。
2、统计量。该过程生成比率估计值、t检验、标准误、置信区间、变异系数、未加权的计数、总体大小、设计效果和设计效果平方根。
3、数据。分子和分母应为正值刻度变量。子体变量可以是字符串或数值,但应该是分类变量。
4、数据文件中的个案代表来自复杂设计的一个样本,该样本应根据在“复杂样本计
划”对话框中所选文件内的指定项进行分析。
五、统计量
1、标准误。估计值的标准误。
2、置信区间。估计值的置信区间,使用指定水平。
3、变异系数。估计值的标准误对估计值的比率。
4、去权重计数。用于计算估计值的单元数。
5、设计效应。估计值的方差与通过假设样本为简单随机样本所获得的方差的比率。这是指定复杂设计的效果测量,该值与1相差越大,表示效果越大。
6、设计效应的平方根。是指定复杂设计的效果的测量值,值与1相差越大表示效果越好。
7、累加值。通过变量的每个值获得的累计估计值。
8、群体大小。总体中估计的单元数。
9、期望值。在假设行变量和列变量独立的条件下,估计值的期望值。
10、残差。如果两个变量之间没有关系,则期望值是期望在单元格中出现的个案数。如果行变量和列变量独立,则正的残差表示单元中的实际个案数多于期望的个案数。
11、调整的残差。单元格的残差(观察值减去期望值)除以其标准误的估计值。生成的标准化残差表示为均值上下的标准差单位。
12、几率比。当因子很少出现时,几率比可用作相对风险的估计值。
13、相对危险度。存在因子出现事件的风险与不存在因子出现事件的风险的比率。
14、危险度差值。存在因子出现事件的风险与不存在因子出现事件的风险之差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26