
SPSS分类分析:决策树
“决策树”过程创建基于树的分类模型。它将个案分为若干组,或根据自变量(预测变量)的值预测因变量(目标变量)的值。此过程为探索性和证实性分类分析提供验证工具。
1、分段。确定可能成为特定组成员的人员。
2、层次。将个案指定为几个类别之一,如高风险组、中等风险组和低风险组。
3、预测。创建规则并使用它们预测将来的事件,如某人将拖欠贷款或者车辆或住宅潜在转售价值的可能性。
4、数据降维和变量筛选。从大的变量集中选择有用的预测变量子集,以用于构建正式的参数模型。
5、交互确定。确定仅与特定子组有关的关系,并在正式的参数模型中指定这些关系。
6、类别合并和连续变量离散化。以最小的损失信息对组预测类别和连续变量进行重新码。
7、示例。一家银行希望根据贷款申请人是否表现出合理的信用风险来对申请人进行分类。根据各种因素(包括过去客户的已知信用等级),您可以构建模型以预测客户将来是否可能拖欠贷款。
二、增长方法(分析-分类-决策树)
1、CHAID.卡方自动交互检测。在每一步,CHAID选择与因变量有最强交互作用的自变量(预测变量)。如果每个预测变量的类别与因变量并非显著不同,则合并这些类别。
2、穷举CHAID.CHAID的一种修改版本,其检查每个预测变量所有可能的拆分。
3、CRT.分类和回归树。CRT将数据拆分为若干尽可能与因变量同质的段。所有个案中因变量值都相同的终端节点是同质的“纯”节点。
4、QUEST.快速、无偏、有效的统计树。一种快速方法,它可避免其他方法对具有许多类别的预测变量的偏倚。只有在因变量是名义变量时才能指定QUEST。
三、验证(分析-分类-决策树-验证)
1、交叉验证:交叉验证将样本分割为许多子样本(或样本群)。然后,生成树模型,并依次排除每个子样本中的数据。第一个树基于第一个样本群的个案之外的所有个案,第二个树基于第二个样本群的个案之外的所有个案,依此类推。对于每个树,估计其误分类风险的方法是将树应用于生成它时所排除的子样本。
1.1、最多可以指定25个样本群。该值越大,每个树模型中排除的个案数就越小。
1.2、交叉验证生成单个最终树模型。最终树经过交叉验证的风险估计计算为所有树的风险的平均值。
2、分割样本验证:对于分割样本验证,模型是使用训练样本生成的,并在延续样本上进行测试。
2.1、您可以指定训练样本大小(表示为样本总大小的百分比),或将样本分割为训练样本和测试样本的变量。
2.2、如果使用变量定义训练样本和测试样本,则将变量值为1的个案指定给训练样本,并将所有其他个案指定给测试样本。该变量不能是因变量、权重变量、影响变量或强制的自变量。
2.3、您可以同时显示训练样本和测试样本的结果,或者仅显示测试样本的结果。
2.4、对于小的数据文件(个案数很少的数据文件),应该谨慎使用分割样本验证。训练样本很小可能会导致很差的模型,因为在某些类别中,可能没有足够的个案使树充分生长
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11