京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS—方差分析(Analysis of Variance, ANOVA)—多因素方差分析(无重复试验双因素)
当遇到两个因素同时影响结果的情况,需要检验是一个因素起作用,还是两个因素都起作用,或者两个因素的影响都不显著
场景
某公司某种茶饮料的调查分析数据
统计了该茶饮料两种不同的包装(新设计的包装和旧的包装)在三个随机的地点的销售金额,分析销售地点和包装方式对销售金额各有怎样的影响
数学模型
无重复试验双因素的方差分析数学模型
试验区组
假设前提
构建模型
偏差平方和及其分解
检验F统计量
方差分析表
菜单
数据源
grocery_1month.sav
1
2
单变量选择
因变量
要进行分析的目标变量,一般为度量变量,数值为数值型。只能选择一个唯一变量。
固定因子
用来分组,一般是可以人为控制的
随机因子
用来分组,各个水平一般是不可以认为控制的,如体重,身高等
协变量
用于协方差分析
与因变量相关的定量变量,是用来控制其他与因子变量有关且影响方差分析的目标变量的其他干扰因素,类似回归分析中的控制变量
WLS权重
选择加权最小二乘法的权重系数
如果加权变量为0、负数或缺失,则将该个案从分析中排除。已用在模型中的变量不能用于加权变量
模型
全因子
系统默认项,用于建立全模型,分析所有因素的主效应及其交互效应,包括所有因子主效应、所有协变量主效应、所有因子间交互,但不包含协变量交互
设定
表示可以仅指定其中一部分的交互或指定因子协变量交互,必须指定要包含在模型中的所有项
因子与协变量
列出在Univariate过程中选择的所有的固定因素变量(F)、随机因素变量(R)和协变量(C)
构建项
交互: 定义进行选择变量的交互效应的方差分析
主效应:
定义进行选择变量的主效应的方差分析
表示模型中仅考虑各个控制变量的主效应而不考虑变量之间的-交互项
All 2-way - All 5-way:
定义进行所有变量的i阶交互效应的方差分析
模型
选择方差分析的主效应。若同时将因子与协变量选项中的两个变量选入,则将其交互效应强行纳入模型
平方和
定义平方和的分解方法
I 分层平凡和,仅处理主效应
II 处理所有其他效应
III 处理I和II中的所有效应
IV 要考虑所有的二维、三维、四纬的交互效应
在模型中包含截距
如果认为数据回归线可以经过坐标轴原点的话,就可以在模型中不含有截距,但是一般系统默认含有截距项
对比
用于设置比较因素水平间差异的方法
无
不进行因子各水平间的任何比较
因子变量每个水平与总平均值进行对比
简单
对因子变量各个水平与第一个水平和最后一个水平的均值进行对比
差值
表示对因子变量的各个水平都与前一个水平进行做差比较
Helmert
表示对因子变量的各个水平都与后面的水平进行做差比较,当然最后一个水平除外
重复
多项式
对每个水平按因子顺序进行趋势分析
绘制
水平轴
均数轮廓图中的横坐标
单图
用来绘制分离线的
多图
每个水平可用来创建分离图
两两比较
参考单因素方差分析,用于确定哪些均值存在差异
保存
预测值
用于保存模型为每个个案预测的值
未标准化
模型为因变量预测的值
加权
加权未标准化预测值
仅在已经选择了WLS变量的情况下可用
标准误
对于自变量具有相同值的个案所对应的因变量均值标准差的估计
残差
用于保存模型的残差
未标准化
因变量的实际值减去由模型预测的值
加权
在选择了WLS变量时提供加权的未标准化残差
标准化
对残差进行标准化的值
学生化
Student化的残差
删除
表示删除残差
诊断
用于标识自变量的值具有不寻常组合的个案和可能对模型产生很大影响的个案的测量
Cook距离
在特定个案从回归系数的计算中排除的情况下,所有个案的残差变化幅度的测量,较大的Cook距离表名从回归统计量的计算中排除个案后,系统会发生根本变化
杠杆值
未居中的杠杆值,每个观察值对模型拟合的相对影响
系数统计
用于保存模型中的参数估计值的斜方差矩阵
选项
提供一些基于固定效应模型的统计量
显示均值
输出该变量的估算边际均值、标准误等统计量
比较主效应
为模型中的任何主效应提供估计边际均值未修正的成对比较
输出
显著性水平
结果分析
描述性统计量
方差齐性检验
检验的零假设:所有组中因变量的误差方差均相等
可以认为因变量在各个因素水平下的误差方差相等
主体间效应的检验
整体模型的Sig < 0.05,此方差模型是显著的
R方 = 0.138,说明消费额的变异被“gender”,“style”,“gender*style”解释的部分有13.8%
gender(性别)对消费额有显著影响
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27