京公网安备 11010802034615号
经营许可证编号:京B2-20210330
单因素下的方差分析
(1) 正态假设。对于因素的每个水平,其观测值都是来自正态总体的随机样本;
(2) 方差齐次假设。各个总体的方差相同;
(3) 独立假设。观测值之间都是独立的。
设试验中的因素A,有r个水平A1,A2,...,An,在每个水平下进行试验得到结果xi1,xi2,...,xini,i=1,2,...,r,其被看作是来自第i个正态总体xi∼N(μi,σ2),其中参数未知且每个样本都独立。从而单因素分析的数学模型可以表示为一种线性模型。

其中,μ是所有总体的均值,αi=μi−μ称为第i个水平的效应,Eij是随机误差。
1.正态性检验
在R语言中,使用Shapiro.test(x)可以对数据x进行正态性检验,参数x是要检验的数据集,它是长度在3~5000之间的向量。
2.方差齐次性检验
该方法是要检验数据在不同水平下,其方差是否相等。在R语言中,使用Bartlett.test()来实现。
方差分析的目的是,要比较因素A的r个水平下,试验结果是否有显著差异。以样本均值作为检验的标准,写出检验假设:
H0:α1=α2=...=αr,H1:α1,α2,...,αr不全相等
如果拒绝原假设H0,说明样本来自不同的正态总体,则由因素A的各个水平所造成均值的差异有统计意义;
如果不能拒绝原假设H0,说明样本来自相同的正态总体,因素的不同水平之间无差异。
案例1,某银行规定VIP客户的月均账户余额要达到100万元,并以此作为比较各个分行业绩的一项指标。这里的“分行”即为因子,账户余额是所要检验的指标,先从三个分行(对应三个水平A1、A2、A3)中,分别随机抽取7个VIP客户的账户,数据列在表(1)中。
表(1) 银行的三个分行A1、A2、A3
(a)正态性检验
//zheng.R
x1=c(103,101,98,110,105,100,106)
x2=c(113,107,108,116,114,110,115)
x3=c(82,92,84,86,84,90,88)
shapiro.test(x1)
shapiro.test(x2)
shapiro.test(x3
效果如下:
图(1) 正态性检验的结果
由图(1)知,P(A1)=0.948 > 0.05,不能拒绝原假设,
P(A2)=0.4607 > 0.05,不能拒绝原假设,
P(A3)=0.7724 > 0.05,不能拒绝原假设,
而原假设H0是变量x服从正态分布,即A1、A2、A3都服从正态分布。
(b)方差齐次性检测
//qi.R
#方差齐性检验
x=c(x1,x2,x3)
account=data.frame(x,A=factor(rep(1:3,each=7)))
bartlett.test(x~A,data=account)
效果如下:
图(2) 方差齐次性检测
由于P=0.9341 > 0.05,不能拒绝原假设,而原假设H0是样本是“齐次的”,即三个样都是等方差的。
(c) 单因素分析
当数据符合正态性,和方差齐次之后,使用aov()就可以进行方差分析了。
//fen.R
a.aov=aov(x~A,data=account)
summary(a.aov)
plot(account$x~account$A)
如图(3)、图(4)所示:
在图(3)中,A表示因子,Residuals表示残差,
Df 表示自由度
SumSq 表示平方和
Mean Sq 表示均方和
F value F 表示F检验统计量的值
Pr(>F) 表示概率。
由于P=8.446e-10 < 0.05,说明拒绝原假设,即不同分行A1、A2、A3的经济业绩有显著差别。
同样,在图(4)中,可以看到三个分行的Me(中位数,箱线图里最粗的黑线,就是中位数,记为Me)是明显不同的,其中分行A1的Me=85,分行A2的Me=103,分行A3的Me=114,,也就是分行A1、A2、A3的经济业绩有显著差别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01