
大数据环境下的多维分析技术
正是由于多维分析技术在业务分析系统的核心功能中的不可替代性,随着商业智能系统的深入应用,分析系统的数据量呈指数级增长,原有依赖硬盘IO处理性能(包括传统数据库、多维立方体文件)的多维分析技术遭遇到性能瓶颈。与此同时,随着服务器内存价格的下降,一种新的基于内存的OLAP技术架构出现了。这种新架构既能够保证类似于MOLAP方式的高性能,也能基于更大的数据量进行分析,还不用定期将数据库里的数据刷新到OLAP服务器来防止数据过期。这种新的体系架构当之无愧地成为大数据环境下搭建多维分析功能的流行选择,而IBM Cognos的Dynamic Cubes就是它的代表作。
动态立方体(Dynamic Cubes)作为一种新的技术架构最先应用在Cognos的10.2.0版本。下面我们以Cognos的11.0版本来看看怎样对动态立方体进行性能调优。
影响因素
动态立方体是以原有ROLAP技术为基础,使用服务器内存作缓存的一种新型技术架构。它的响应性能的影响因素包括。
数据仓库(数据集市):由于DynamicCubes的事实表数据都存储在数据仓库中,因此,有时数据仓库的性能好坏会影响前端多维分析查询的响应速度。在数据仓库的多维数据模型中,需要注意:
维表中的连接事实表的代理键的数据类型应该采用integer类型
维表中的各个层级的层级键的数据类型应该采用integer类型
2.数据库:提高数据库的查询性能,有助于提高最终多维分析展现的响应速度。
有时候多维分析的性能严重依赖于数据库运行大数据量多任务查询任务的性能
数据库基于的硬件资源(内存、CPU及IO)应该考虑到大数据量并行查询的性能,因此基于物理机的数据库性能当然比基于虚拟机的更优
尽量少用或者不用视图,因为视图的数据不是物理存在的
最好采用分析型的MPP数据库,因为多维分析都是针对大数据量的汇总查询
采用列存储技术的数据库对于大量并发并联查询性能更优
要确保查询性能最优化,可以通过数据库的性能分析监控、执行计划分析等工具
索引的设计,对于非MPP数据库,索引的设计对于查询性能影响很大
动态立方体性能调优
1.由于动态立方体使用机器内存和CPU进行性能增强,所以在对应用服务器的硬件进行评估时应该为将来的性能扩展留一定的预留空间。硬件评估可以通过Cognos提供的建模工具Cube Designer里的“评估硬件需求”功能初步估算。如下图所示。
2.在多维立方体模型设计时,使用模型验证功能,可以知道影响性能的问题所在。可能的问题有:连接字段类型、星形模型与雪花模型、过滤器的使用、视图的使用等等。如下图所示。
3.评估模型的复杂度。如果多维模型的维度和度量很多,数据量也很大,可以通过设计聚合表或者聚合内存来提升查询性能。动态立方体会通过聚合感知技术找到最合适的聚合数据集进行查询以提高查询性能。如下图所示。
4.JVM设置。动态立方体使用Java虚拟机作为内存管理的容器载体,所以Cognos也提供了一些JVM堆设置来优化数据查询性能。你可以在Cognos Administration界面上找到Query Service服务进行参数调整。如下图所示。
5.您还可以通过Cognos的Dynamic Query Analyzer (DQA)工具来对动态立方体的查询性能进行评估并得到优化建议。在进行评估之前,记得将Dynamic Cubes的工作日志打开,如下图所示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10