
SPSS数据准备:标识异常个案
一、标识异常个案(数据-标识异常个案)
“异常检测”过程查找基于聚类组标准值偏差的异常个案。该过程设计为在探索性数据分析步骤中,快速检测到用于数据审核的异常个案,并优先于任何推论性数据分析。此算法设计为一般“异常检测”;即异常个案的定义不被指定为任何特定应用程序,例如对保健行业中异常付款模式的检测或对金融业中洗钱行为的检测,其中对异常的定义可以被很好地界定。
示例。雇用的构建中风治疗效果预测模型的数据分析人员对数据质量非常关注,因为这类模型对异常观察值十分敏感。某些偏离的观察值表示真正唯一的个案,因此不适合用于预测,而其他观察值是由数据输入错误导致的,其值从技术上说是“正确”的,因此不能被数据验证过程捕获。“标识异常个案”过程找出并报告这些离群值,以便分析人员能够确定如何处理这些值。
统计量。该过程生成对等组、连续和分类变量的对等组标准值、基于对等组标准值偏差的异常指标,以及对被视为异常的个案影响最大的变量影响值。
数据。此过程既处理连续变量也处理分类变量。每行表示一个不同观察值,每列表示一个对等组以其为基础的不同变量。个案标识变量可在用于标记输出的数据文件中获得,但不能用于分析中。允许缺失值。被指定的权重变量可以忽略。检测模型可用于新检验数据文件。检验数据元素必须与培训数据元素一致。并且,根据算法设置,用于创建模型的缺失值处理方法可适用于优先于评分的检验数据文件。
个案顺序。注意,解决方案可取决于个案顺序。要使顺序的影响降至最低程度,可随机排列个案的顺序。想要验证给定解的稳定性,您可能想要通过以不同随机顺序排序的案例来得到多个不同的解。在文件非常大的情况,可使用以不同随机顺序排序的个案样本运行多次。
假设。算法假设所有变量都为不恒定且独立的,并且没有个案具有含有任何输入变量的缺失值。假设每个连续变量具有正态(高斯)分布,假设每个分类变量具有多项分布。经验内部检验表明,该过程对于违反独立性假设和分布假设均相当稳健,但应了解这些假设符合的程度。
二、输出(数据-标识异常个案-输出)
1、对等组标准值。此选项显示连续变量标准值表(如果分析中使用了任何连续变量)以及分类变量标准值表(如果分析中使用了任何分类变量)。连续变量标准值表显示每个对等组的每个连续变量的均值和标准差。分类变量标准值表显示每个对等组的每个分类变量的众数(最大类别)、频率和频率百分比。连续变量的均值和分类变量的众数在分析中用作标准值。
2、异常指标。异常指标摘要显示标识为最不正常个案的异常指标的描述统计。
3、按分析变量列出出现的原因。对于每个原因,该表将每个变量的出现频率和频率百分比显示为原因。该表还报告每个变量的影响的描述统计。如果在“选项”选项卡上将最大的原因数量设置为0,则此选项不可用。
4、已处理的个案数。个案处理摘要显示活动数据集中所有个案的计数和计数百分比、分析中包含和排除的个案,以及每个对等组中的个案。
三、保存(数据-标识异常个案-保存)
1、异常指标。将每个个案的异常指标值保存到具有指定名称的变量中。
2、对等组。将对等组ID、个案计数以及每个个案的以百分比表示的大小保存到具有指定根名称的变量中。例如,如果指定了根名称Peer,则会生成变量Peerid、PeerSize和PeerPctSize。Peerid为个案的对等组ID,PeerSize为组的大小,而PeerPctSize为用百分比表示的组大小。
3、原因。使用指定的根名称保存原因变量集。原因变量集包含作为原因的变量的名称、变量影响度量、变量自身的值以及标准值。变量集的数量取决于在“选项”选项卡上请求的原因的数目。例如,如果指定根名称Reason,则会生成变量ReasonVar_k、ReasonMeasure_k、ReasonValue_k和ReasonNorm_k,其中k是第k个原因。如果原因数量设置为0,则此选项不可用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10