京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS数据准备:标识异常个案
一、标识异常个案(数据-标识异常个案)
“异常检测”过程查找基于聚类组标准值偏差的异常个案。该过程设计为在探索性数据分析步骤中,快速检测到用于数据审核的异常个案,并优先于任何推论性数据分析。此算法设计为一般“异常检测”;即异常个案的定义不被指定为任何特定应用程序,例如对保健行业中异常付款模式的检测或对金融业中洗钱行为的检测,其中对异常的定义可以被很好地界定。
示例。雇用的构建中风治疗效果预测模型的数据分析人员对数据质量非常关注,因为这类模型对异常观察值十分敏感。某些偏离的观察值表示真正唯一的个案,因此不适合用于预测,而其他观察值是由数据输入错误导致的,其值从技术上说是“正确”的,因此不能被数据验证过程捕获。“标识异常个案”过程找出并报告这些离群值,以便分析人员能够确定如何处理这些值。
统计量。该过程生成对等组、连续和分类变量的对等组标准值、基于对等组标准值偏差的异常指标,以及对被视为异常的个案影响最大的变量影响值。
数据。此过程既处理连续变量也处理分类变量。每行表示一个不同观察值,每列表示一个对等组以其为基础的不同变量。个案标识变量可在用于标记输出的数据文件中获得,但不能用于分析中。允许缺失值。被指定的权重变量可以忽略。检测模型可用于新检验数据文件。检验数据元素必须与培训数据元素一致。并且,根据算法设置,用于创建模型的缺失值处理方法可适用于优先于评分的检验数据文件。
个案顺序。注意,解决方案可取决于个案顺序。要使顺序的影响降至最低程度,可随机排列个案的顺序。想要验证给定解的稳定性,您可能想要通过以不同随机顺序排序的案例来得到多个不同的解。在文件非常大的情况,可使用以不同随机顺序排序的个案样本运行多次。
假设。算法假设所有变量都为不恒定且独立的,并且没有个案具有含有任何输入变量的缺失值。假设每个连续变量具有正态(高斯)分布,假设每个分类变量具有多项分布。经验内部检验表明,该过程对于违反独立性假设和分布假设均相当稳健,但应了解这些假设符合的程度。
二、输出(数据-标识异常个案-输出)
1、对等组标准值。此选项显示连续变量标准值表(如果分析中使用了任何连续变量)以及分类变量标准值表(如果分析中使用了任何分类变量)。连续变量标准值表显示每个对等组的每个连续变量的均值和标准差。分类变量标准值表显示每个对等组的每个分类变量的众数(最大类别)、频率和频率百分比。连续变量的均值和分类变量的众数在分析中用作标准值。
2、异常指标。异常指标摘要显示标识为最不正常个案的异常指标的描述统计。
3、按分析变量列出出现的原因。对于每个原因,该表将每个变量的出现频率和频率百分比显示为原因。该表还报告每个变量的影响的描述统计。如果在“选项”选项卡上将最大的原因数量设置为0,则此选项不可用。
4、已处理的个案数。个案处理摘要显示活动数据集中所有个案的计数和计数百分比、分析中包含和排除的个案,以及每个对等组中的个案。
三、保存(数据-标识异常个案-保存)
1、异常指标。将每个个案的异常指标值保存到具有指定名称的变量中。
2、对等组。将对等组ID、个案计数以及每个个案的以百分比表示的大小保存到具有指定根名称的变量中。例如,如果指定了根名称Peer,则会生成变量Peerid、PeerSize和PeerPctSize。Peerid为个案的对等组ID,PeerSize为组的大小,而PeerPctSize为用百分比表示的组大小。
3、原因。使用指定的根名称保存原因变量集。原因变量集包含作为原因的变量的名称、变量影响度量、变量自身的值以及标准值。变量集的数量取决于在“选项”选项卡上请求的原因的数目。例如,如果指定根名称Reason,则会生成变量ReasonVar_k、ReasonMeasure_k、ReasonValue_k和ReasonNorm_k,其中k是第k个原因。如果原因数量设置为0,则此选项不可用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27