
SPSS数据准备:标识异常个案
一、标识异常个案(数据-标识异常个案)
“异常检测”过程查找基于聚类组标准值偏差的异常个案。该过程设计为在探索性数据分析步骤中,快速检测到用于数据审核的异常个案,并优先于任何推论性数据分析。此算法设计为一般“异常检测”;即异常个案的定义不被指定为任何特定应用程序,例如对保健行业中异常付款模式的检测或对金融业中洗钱行为的检测,其中对异常的定义可以被很好地界定。
示例。雇用的构建中风治疗效果预测模型的数据分析人员对数据质量非常关注,因为这类模型对异常观察值十分敏感。某些偏离的观察值表示真正唯一的个案,因此不适合用于预测,而其他观察值是由数据输入错误导致的,其值从技术上说是“正确”的,因此不能被数据验证过程捕获。“标识异常个案”过程找出并报告这些离群值,以便分析人员能够确定如何处理这些值。
统计量。该过程生成对等组、连续和分类变量的对等组标准值、基于对等组标准值偏差的异常指标,以及对被视为异常的个案影响最大的变量影响值。
数据。此过程既处理连续变量也处理分类变量。每行表示一个不同观察值,每列表示一个对等组以其为基础的不同变量。个案标识变量可在用于标记输出的数据文件中获得,但不能用于分析中。允许缺失值。被指定的权重变量可以忽略。检测模型可用于新检验数据文件。检验数据元素必须与培训数据元素一致。并且,根据算法设置,用于创建模型的缺失值处理方法可适用于优先于评分的检验数据文件。
个案顺序。注意,解决方案可取决于个案顺序。要使顺序的影响降至最低程度,可随机排列个案的顺序。想要验证给定解的稳定性,您可能想要通过以不同随机顺序排序的案例来得到多个不同的解。在文件非常大的情况,可使用以不同随机顺序排序的个案样本运行多次。
假设。算法假设所有变量都为不恒定且独立的,并且没有个案具有含有任何输入变量的缺失值。假设每个连续变量具有正态(高斯)分布,假设每个分类变量具有多项分布。经验内部检验表明,该过程对于违反独立性假设和分布假设均相当稳健,但应了解这些假设符合的程度。
二、输出(数据-标识异常个案-输出)
1、对等组标准值。此选项显示连续变量标准值表(如果分析中使用了任何连续变量)以及分类变量标准值表(如果分析中使用了任何分类变量)。连续变量标准值表显示每个对等组的每个连续变量的均值和标准差。分类变量标准值表显示每个对等组的每个分类变量的众数(最大类别)、频率和频率百分比。连续变量的均值和分类变量的众数在分析中用作标准值。
2、异常指标。异常指标摘要显示标识为最不正常个案的异常指标的描述统计。
3、按分析变量列出出现的原因。对于每个原因,该表将每个变量的出现频率和频率百分比显示为原因。该表还报告每个变量的影响的描述统计。如果在“选项”选项卡上将最大的原因数量设置为0,则此选项不可用。
4、已处理的个案数。个案处理摘要显示活动数据集中所有个案的计数和计数百分比、分析中包含和排除的个案,以及每个对等组中的个案。
三、保存(数据-标识异常个案-保存)
1、异常指标。将每个个案的异常指标值保存到具有指定名称的变量中。
2、对等组。将对等组ID、个案计数以及每个个案的以百分比表示的大小保存到具有指定根名称的变量中。例如,如果指定了根名称Peer,则会生成变量Peerid、PeerSize和PeerPctSize。Peerid为个案的对等组ID,PeerSize为组的大小,而PeerPctSize为用百分比表示的组大小。
3、原因。使用指定的根名称保存原因变量集。原因变量集包含作为原因的变量的名称、变量影响度量、变量自身的值以及标准值。变量集的数量取决于在“选项”选项卡上请求的原因的数目。例如,如果指定根名称Reason,则会生成变量ReasonVar_k、ReasonMeasure_k、ReasonValue_k和ReasonNorm_k,其中k是第k个原因。如果原因数量设置为0,则此选项不可用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26