京公网安备 11010802034615号
经营许可证编号:京B2-20210330
有一水稻施肥的盆栽试验,设置了5个处理:A1和A2分别施用两种不同工艺流程的氨水,A3施碳酸氢铵,A4施尿素,A5为对照。每个处理各4盆,随机置于同一试验大棚。水稻稻谷产量见下表。现分析不同施肥处理下,水稻稻谷产量之间是否有显著差异。
1.1.3 课程实习任务
①按课程设计题目要求设计脚本;
②脚本能够完成对水稻数据的单因素方差分析;
③编写代码;
④脚本分析与调试;
⑤撰写实验报告。
1.1.4 课程实习目标
①巩固并加深对R语言的理解和掌握;
②通过课外学习拓展课程知识面;
③提高运用R语言解决生活实际问题的能力;
④初步掌握开发简单脚本的基本方法;
⑤掌握书写程序设计与软件开发的阐述性、总结性文档。2. 程序设计层次及说明展示
由于采用代码注释的方法,形式上不太美观,且不容易直接看到结果,造成阅览不变,故笔者采用了将脚本文件分部分执行,截图进行说明的方法,让每部操作清晰明了,结果明显。再在本节末尾附上代码文件以供阅览。
2.1 数据录入
此处是直接进行了程序录入,将数据录入参数shuidaodata中。其中,每行数据对应一个组别。
而这里可以也可使用scan函数进行交互键入,又或者将数据保存为csv格式,再用read.csv函数根据途径录入也可以。
这里根据每行对应的类型不同分别命名。命名的列量名称为参数name,数据框名为参数shuidao。
由于水稻数据内容构成比较简单,因素单一,所以不需要再融化数据框操作了,因为在数据框形成时已经完成了融化处理的结果,再进行转化反而繁琐,故不需要使用melt函数。同理,此份水稻数据中不包含冗余成分,故也同样不需要冗杂数据处理。
此处直接使用aov函数进行单因素方差分析,得到结果参数result的F值为11.18,p值小于0.05,且各因子水平的均值之间存在十分显著差异。
经过单因素方差分析可得知,肥料因素对产量的结果影响十分显著,也因此可以再做一些步骤来确认其真实性,以及深入了解其差异性的特质。
这里先用lm函数进行线性回归模型拟合,将结果参数mo录入qqPlot函数中,得到下图:

可见回归曲线在范围内,故数据符合正态性检验。
检验正态性的方法不唯一,在网上资料查询中,还有如下方法:
1.ks.test函数,但是由于数据中包含重复数值,故前提假设不成立,不便使用。
2.W检验的shapiro.test函数,得出p值大于0.05时数据正态性得到检验。

可见水稻数据正态性依旧得到检验。
3. fBasics包里的shapiroTest函数

可见水稻数据正态性依旧得到检验。
由于数据满足正态性,故使用bartlett.test函数进行方差齐性检验,得出结果p值远大于显著性水平0.05,因此不能拒绝原假设,认为不同水平下的水稻数据是等方差的。故等方差性得到检验。
而当数据不满足正态性时,也可以使用leveneTest函数进行方差齐性检验。
为更深一步探索每组之间的差异,采用TukeyHSD函数检验,如下:

其中修改了par中的绘图参数,以便图形更加简洁清晰,绘图如下:

在这里可以清晰的看出,与0坐标线是值信水平,与其相交的部分就是效果不显著的组别,反之则是效果显著的组别。也因此可以得出结论:A1-A5、A2-A4、A3-A5、A4-A5之间有显著的差异。
同样的,在网络搜索中,还有其他的方法可以揭示组别之间的差异,此处我使用的是多重t检验法:

在这里可以清晰的看出,p值小于0.05的就是差异较为显著的组别,和上一小节的结论一致。
2.9 结论
从水稻数据的单因素方差分析结果得知,肥料因素对产量的结果影响十分显著,且结果经检验符合正态性、等方差性,故结果较为可信。
最后经过各组均值差异检测后得知,A1-A5、A2-A4、A3-A5、A4-A5四组之间差异较为显著,且由题干可知,A5为对照组,故可知A1、A3、A4三组肥料效果较好。
2.10 代码展示
#数据录入
shuidaodata<-c(24,30,28,26,
27,24,21,26,
31,28,25,30,
32,33,33,28,
21,22,16,21)
#转化为数据框
name<-rep(paste(“A”,1:5,sep=”“),each=4)
shuidao<-data.frame(name,shuidaodata)
#单因素方差分析
result<-aov(shuidaodata~name,data=shuidao)
summary(result)
#正态性检验
#Q-Q图
mo<-lm(shuidaodata~name,data=shuidao)
library(car)
qqPlot(mo,main=”Q-Qplot图”,las=T)
#W检验
#shapiro.test(shuidaodata)
#fBasics包的shapiroTest
#library(fBasics)
#shapiroTest(shuidaodata)
#方差齐性检验
bartlett.test(shuidaodata~name,data=shuidao)
#各组均值差异
#杜奇检验
duqi<-TukeyHSD(result)
par(lwd=2,cex.lab=1.5,cex.axis=1.5,col.axis=”blue”,las=1)
plot(duqi,mgp=c(3,0.5,0))
#多重t检验法
#pairwise.t.text(shuidaodata,name)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27