
物联网技术优化安防 大数据成中流砥柱
物联网利用互联网等通信技术把传感器、控制器、机器、人员和物等通过新的方式联在一起,形成人与物、物与物相联,实现信息化、远程管理控制和智能化的网络,对智能安防起到了巨大的推动作用。由于物联网数据具有非结构化、碎片化、时空域等特性,需要新型的数据存储和处理技术。而大数据技术可支持物联网上海量数据的更深应用。物联网上的大数据应用空间广阔,大数据和物联网结合充满无限可能。
一、物联网技术中的大数据是关键
相比传统的互联网,在物联网中,对大数据技术具有更高的要求,主要体现在以下几方面:
(一)物联网中的数据量更大
物联网的最主要特征之一是节点的海量性,除了人和服务器之外,物品、设备、传感网等都是物联网的组成节点,其数量规模远大于互联网;同时,物联网节点的数据生成频率远高于互联网,如传感节点多数处于全时工作状态,数据流源源不断。
(二)物联网中的数据速率更高
一方面,物联网中数据海量性必然要求骨干网汇聚更多的数据,数据的传输速率要求更高;另一方面,由于物联网与真实物理世界直接关联,很多情况下需要实时访问、控制相应的节点和设备,因此需要高数据传输速率来支持相应的实时性。
(三)物联网中的数据更加多样化
物联网涉及的应用范围广泛,从智慧城市、智慧交通、智慧物流、商品溯源,到智能家居、智慧医疗、安防监控等,无一不是物联网应用范畴;在不同领域、不同行业,需要面对不同类型、不同格式的应用数据,因此物联网中数据多样性更为突出。
(四)物联网对数据真实性的要求更高
物联网是真实物理世界与虚拟信息世界的结合,其对数据的处理以及基于此进行的决策将直接影响物理世界,物联网中数据的真实性显得尤为重要。
综合以上分析可以看出,大数据是物联网中必须的关键技术,二者的结合能够为物联网系统和应用的发展带来更好的技术基础。以智能安防应用为例,智能安防行业是典型的大数据与物联网相结合的应用场景,物联网技术的普及应用使安防从过去简单的安全防护系统向城市综合化体系演变,涵盖众多的领域,特别是针对重要场所,如机场、银行、地铁、车站、水电气厂、道路桥梁等场所,引入物联网技术后可以通过无线移动、跟踪定位等手段建立全方位的立体防护。智能安防行业需求已从大面积监控布点转变为注重视频智能预警、分析和实战,迫切需要利用大数据技术从海量的视频数据中进行规律预测、情境分析、串并侦查、时空分析等。
二、大数据应用于物联网提升智能安防
智能化安防技术的主要内涵是其相关内容和服务的信息化,图像、视频的传输和存储,数据的存储和处理等等。在智能安防领域,数据的产生、存储和处理是智能安防解决方案的基础,只有采集足够有价值的安防信息,通过大数据分析以及综合研判模型,才能制定智能安防决策。同时,大数据处理能够更好地指出智能安防解决方案中存在的问题,从而有针对性地提升智能安防产品服务质量。
如何更好地将大数据技术应用于物联网应用中,主要需要从以下几方面开展深入探索:
(一)解决大数据的获取和管理问题
基于物联网标识技术,对设备和数据进行统一标识和管理(智能安防领域如监控信号、图像、视频等),从设备层面解决数据稀疏性问题,从而为大数据的分析和处理奠定底层基础。
(二)解决大数据的处理方法问题
采用分类处理技术,基于处理需求对数据进行分类,对实时数据进行流处理,对离线数据进行批处理,从而在保证处理效率的同时提高数据分析的有效性。
(三)解决大数据的应用模式问题
针对物联网应用在不同行业的特点,对大数据背景下不同行业之物联网业务的新需求进行探索,从而使大数据技术能够对智能安防等应用产生实际的价值。
综上所述,物联网与大数据都是当前业界关注的热门技术,如何使二者有机融合在一起,为应用提供网络、数据两方面的基础服务,是物联网和大数据相关应用发展的关键所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04