
Excel-直方图(频率分布)分析
直方图又称频率分布图,是一种显示数据分布情况的柱形图,即不同数据出现的频率。通过这些高度不同的柱形,可以直观、快速地观察数据的分散程度和中心趋势,从而分析流程满足客户需求的程度。图9-42列出了直方图能够回答的问题。
图9-42直方图能够回答的问题
直方图适用于连续数据的分析(如客户收到订单商品的天数),因此直方图对数据量有一定的要求。如果数据量很少时,可以直接使用散点图进行展示。
在Excel中绘制直方图有两种方式,一种是手动绘制,即自己统计出数据的频率,然后通过插入柱形图进行实现;另一种方法是使用数据分析工具直接生成统计图形。
1.手动绘制
图9-43是网站手机数码类商品客户收货天数测量结果,现在统计这些数据的分布频率。
首先,使用Excel的MAX和MIN函数找出该组数据的最大值和最小值,计算最大值和最小值之差,即数据范围;然后,根据数据特征或统计需要,确定要分的组数。该组数据的最大值和最小值分别为24和1,经过讨论,决定将数据分为[1~5]、[6~10]、[11~15]、[15~20]、[21~24] 5个组。
图9-43手机数码类商品客户收货天数
下面需要统计数据在各组的出现次数,即频率。在Excel中可以使用FREQUENCY(data_array,bins_array)函数统计数据的频率,data_array是要计算频率的数据,bins_array是对分组区间的引用。在图9-44所示的H2~H6单元格中分别输入每组的最大值,然后选定J2:J6单元格,输入公式=FREQUENCY(A1:F7,H2:H6)后,按下<Ctrl+Shift+Enter>组合键,即可看到各组中数据的出现次数。
图9-44统计数据在各组的出现次数
选定I1:J6区域,在“插入”功能区的“图表”模块中,单击“柱形图”Ž“簇状柱形图”按钮,即可看到绘制的柱形图,即直方图,如图9-45所示。可以看到,客户收货天数主要集中在6~10天。
图9-45插入柱形图
然后可以对图表进行美化,去除图例栏,修改图表的标题为“客户收货时间区间分布图”,如图9-46所示。
图9-46美化后的统计图形
2.数据分析工具绘制
单击“数据”选项卡中的“数据分析”按钮,打开“数据分析”对话框,如图9-47所示。
图9-47“数据分析”对话框
从分析工具列表中选择“直方图”后单击“确定”按钮,将打开如图9-48所示的“直方图”对话框。
图9-48“直方图”对话框
输入区域即存放原始采集数据的位置,选择A1:F7区域。接收区域是设置的区间分割点,仍旧使用手动统计频率时的H2:H6区域。
输出区域即存放频率统计结果的位置,也就是说,Excel会根据指定的区间分割点,自动计算原始采集数据的频率。
勾选“图表输出”复选框才会输出图表,否则仅显示频率统计结果。“柏拉图”和“累积百分率”请参考XX节“帕累托图”的介绍。
设置完成后,单击“确定”按钮,即可看到频率统计结果和输出的统计图表,如图9-49所示。
图9-49输出的频率统计结果和图表
可以看到自动统计结果(A10:B16)与手工统计的结果(J2:J6区域)完全相同,但是包含了一个“其他”选项,并且图表的分类轴标签使用的是区间分割点值,这时需要对图表进行一些美化调整。删除“其他”选项数据,然后将I2:I6区域的组标识数据复制到A11:A15区域修正分类轴标签显示,并对图表标题进行修改等,最后结果如图9-50所示。
图9-50美化后的直方图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10